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Abstract—Reliability, availability and serviceability (RAS) logs
of high performance computing (HPC) resources, when closely
investigated in spatial and temporal dimensions, can provide in-
valuable information regarding system status, performance, and
resource utilization. These data are often generated from multiple
logging systems and sensors that cover many components of the
system. The analysis of these data for finding persistent temporal
and spatial insights faces two main difficulties: the volume of
RAS logs makes manual inspection difficult and the unstructured
nature and unique properties of log data produced by each sub-
system adds another dimension of difficulty in identifying implicit
correlation among recorded events. To address these issues, we
recently developed a multi-user Big Data analytics framework
for HPC log data at Oak Ridge National Laboratory (ORNL).
This paper introduces three in-progress data analytics projects
that leverage this framework to assess system status, mine event
patterns, and study correlations between user applications and
system events. We describe the motivation of each project and
detail their workflows using three years of log data collected from
ORNL’s Titan supercomputer.

Index Terms—high performance computing, Big Data applica-
tions, data analysis, event log analysis

I. INTRODUCTION

Today’s HPC systems are heavily instrumented, producing
various types of data regarding system status, resource usages,
and user application runs, to name a few. These data are gen-
erated by components, both hardware and software, at various
layers and locations of the system, portraying different aspects
of the system, such as critical conditions, faults, errors and
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failures. For example, a Machine Check Exception (MCE) is
an error that can be detected by every processor in the system.
MCE errors are mainly warnings or fatal exceptions, and are
recorded in a system console log. Reliability, availability and
serviceability (RAS) logs, on the other hand, collect data from
various hardware and software sensors, such as temperature
sensors and processor utilization. Network systems monitor
and produce data about link status, such as link errors and
congestion. Parallel files systems produce logs that record
errors and performance degradation observed at both, server
and client sides. For each run of a user application, a job
log records the allocated resources, user information, and exit
status (normal or abnormal termination).

Each log entry may seem independent. However, in many
cases, log entries are generated due to the same root cause.
For example, when a high speed interconnect router or switch
malfunctions, different components generate event logs from
their perspectives. The system module that watches over the
network status starts logs events for every connection segment
that is affected by the failure. Object storage servers and
clients of the parallel file system report failed transactions,
complaining about no responses received from peers when the
file I/O request was sent through the failed router or switch.
Also, the same router failure can cause user applications to
generate error messages when their communication routines,
such as MPI, return with an error. This easily results in
hundreds of thousands of events accumulated in log data
generated at different layers and parts as the root cause of
the problem propagates over the entire system. Therefore,
although generated individually from different perspectives,
this heterogeneous collection of log data, once fused and
correlated properly, can offer a holistic view of the system
that facilitates efficient failure detection, error propagation
tracking, and system reliability evaluation.

Analysis of log data, however, is a challenge. First, the sheer
volume of logs is easily beyond what manual inspection can



handle. Second, logs are often of irregular structures and of
heterogeneous types, e.g., numbers, texts, and hexadecimal
codes. There exist a few commercial systems that greatly
improve processing large amount of data, but their usages
are mainly restricted to specific information technology (IT)
products or ecosystems. Consequently, the usage of log data
is, in practice, largely limited to detection of mere occurrences
of known text patterns that are already known to be associated
with certain types of events. With increasing complexity, es-
pecially with exascale systems on the horizon, the complexity,
and the number of components and subsystems will continue
to grow, generating ever bigger amounts of log data.

To address these challenges, we developed Log process-
ing by Spark and Cassandra-based ANalytics (LogSCAN).
LogSCAN stores large quantity of data in scalable and highly
available distributed data and compute frameworks. LogScan
intends to serve a wide range of researchers and engineers,
providing capability of flexible extraction of different views
of data and their computation. To demonstrate its value,
we launched three analytic projects that each addresses an
important aspect of log analysis: 1) assessment of system
status, 2) mining of significant event patterns in logs, and
3) correlation analysis of application runs with system status
events. Each task requires not only processing of large log
data, but also integrating different log entries spatially and
temporally. This paper introduces how these tasks, which are
still in development, are performed utilizing the LogSCAN.

II. RELATED WORK

The ever increasing complexity of HPC systems and IT sys-
tems in the public and private sector, along with the availability
of publicly available datasets has lead to an increasing number
of studies in log analysis and characterization.

A number of studies conducted post-mortem analysis on
logs of large-scale systems to assess reliability of the system,
extracting statistical properties of system errors and failures
[1] [2] [3]. To handle voluminous logs from large-scale
systems, some works applied filtering and categorizing events
[4] [5] [6]. Gupta et al. [7] conducted log analyses with 5
generations of supercomputers at ORNL, including the Titan
supercomputer. The study was conducted by applying scripts
on data files, not utilizing a data/compute framework such as
LogSCAN. Their analyses studied mean time between failure
(MTBF), and temporal and spatial characteristics of failures.
Oliner and Stearley [5] studied the log files of 5 HPC systems.
They describe why HPC system logs are important and the
obstacles the community faces trying to analyze the tremen-
dous amount of data. They provide four recommendations to
overcome these challenges. Zheng et al. [8] analyzed the RAS
and job logs of Intrepid, a Blue Gene/P system at Argonne
National Laboratory (ANL). The co-analysis of job and system
logs revealed that high workloads do not necessarily mean
high failure rates, faults usually do not propagate between
jobs, and job interruptions caused by applications are usually
reported early. Martino et al. [9] present LogDiver, a tool
developed to analyze the log data produced by Blue Waters, a

Cray XE/XK machine at the University of Illinois. Sı̂rbu and
Babaoglu [10] studied the system logs of the Fermi supercom-
puter. They integrated the data of four different subsystems
(power, temperature, workload, and hardware/software events).
They characterized the Blue Gene/Q system’s thermal, power,
workload, and event logs, and conducted correlation studies
among the metrics. Li et al. [11] present FLAP, an integrated
log analysis platform, for end-to-end analysis and system
management. They show that an integrated analysis system
can greatly improve productivity of routine analysis tasks of
system administrators. They further show that utilizing data
mining techniques improve the ability for system administra-
tors to gain insights into monitored systems, and can quickly
pinpoint root causes of failures using temporal event analysis.
The work by Park et al. [12] introduces the log analytics
framework used for the study presented in this paper. The
framework utilizes a scalable Cassandra database cluster to
store the log data for efficient retrieval by Apache Spark which
is used to carry out data analytics.

III. ARCHITECTURE OF THE LOGSCAN AND DATA

This section briefly describes the architecture of LogSCAN
and the structure of Titan log data used for this study.

A. LogSCAN

LogSCAN is implemented in the private cloud of Compute
and Data Environment for Science (CADES) at ORNL. The
CADES private cloud is a +3000-core Broadwell and Haswell
Xeon-based compute environment that is open to researchers
and their collaborators. It is set up to accommodate many
types of scientific workflows with fast solid-state drive (SSD)
block storage, commodity spinning disks for large storage
needs, 10Gb bonded Mellanox Ethernet networking, and large
memory nodes. Compared to a public cloud, it offers data
locality. The data lives closer to fast, large, low-latency storage
for both, general use and archiving. LogSCAN is a dedicated
project of the CADES cloud that allocates 256 cores, 328GB
of RAM, and 1TB of block storage.

The main components of LogSCAN are the backend
database and the Big Data processing unit, which are imple-
mented with Cassandra [13] and Spark [14], respectively. It
also consists of a Web server and a query processing engine.
The user queries are received by the Web server, translated
by the query engine, and either forwarded to the back-end
database, or the Big Data processing unit, depending on the
type of a user query. Simple queries are directly handled by
the query engine, and complex queries are passed to the Big
Data processing unit.

LogSCAN serve simultaneous queries from multiple users,
who may also require long-lived connections. For this,
LogSCAN adopted Tornado framework [15], which supports
long-living asynchronous connections through non-blocking
I/O, long-polling and WebSockets. The Cassandra database and
the Apache Spark cluster are installed over the same virtual
machine (VM) instances in CADES to maximize data locality.
The backend database is designed to store redundant data



tables that each is partitioned (or equivalently indexed) by
a specific attribute such as hour, user, application, location,
and event type to maximize query responses. All date in each
table are time-ordered to facilitate time-series analytics. For
details of LogSCAN, please refer to [12].

B. Titan Log Data

Titan logs produced between January 2015 to March 2018
are populated into LogSCAN and used for the studies. The
Titan supercomputer is hosted at the Oak Ridge Leadership
Computing Facility (OLCF). It is a heterogeneous Cray system
with 18,688 16-core AMD Opteron CPUs, 18,688 NVIDIA
Tesla K20X GPUs, a Lustre filesystem, and a 3D torus
interconnect network. The Titan logs contain three prominent
- console, consumer, and netwatch logs from the Cray logging
system. A specific event parser is applied to each logging
category, and the processed records are transformed into events
which are assigned to one of 22 event types according to their
logging nature. For example, certain hardware failures could
occur in different areas of the system and the associated events
could be recorded and parsed as of two distinctive event types
- “MCE” and “HWERR”. The total occurrence of each event
type during the period is summarized in Table I.

Titan’s nodes are organized in a multi-dimensional grid
which could be laid out in form of “Cabinet by Chassis by
Slot by Node/Gemini router.” According to the nodal naming
convention of the Titan architecture, the physical sources
which record the events could be represented in either of
two formats. The first one (e.g., “c16-3c0s4n1”) shows that
the recorded event occurred at ”Cabinet, Row 16 by Column
3, Chassis 0, Slot 4 and Node 1,” while the second source
format (e.g., “c12-2c1s2g0”) shows the event was recorded at
“Cabinet, Row 12 by Col 2, Chassis 1, Slot 2 and Gemini
0.” In the entire analysis which is presented in this study, all
events recorded on nodes whose source names comply with
the second naming convention are excluded.

Usually the scope of the event source is well constrained
by Titan’s architecture. There are i) 25 rows by 8 columns
of machine cabinets; ii) 3 chassis in each cabinet; iii) 8
slots in each chassis; and iv) 4 nodes in each slot. However,
during the parsing process, some events are identified with
“unconventional” source names such as “c231-1c2s0n1” or
“c8-5c0s6n16”. Even though they are extremely rare (less than
10 in almost two hundred million), we deem them as valuable
indicators of how well the logging system is working at OLCF
and worth further investigation.

Counting from a start time at “2015-01-27 11:19:54” to
the end of log records at “2018-03-09 14:11:42,” the total
number of event records are close to 187 million. Among
them, five event types - “Lustre Error”, “Lustre”, “LNet”,
“HWERR” and “Lanemask Change” - dominate with their
total counts (in millions) of 55.7, 48.6, 35.1, 18.2 and 16.8,
respectively. All other event types accumulate to numbers of
order of magnitudes lower. In Figure 1, we show the total event
counts accumulated in each day. A moderate time resolution
of a day is chosen to collect the total number of counts at

Counts Percentage ID Description

11 0 1 DVS Confusion
3,040,934 1.6 2 NVRM Xid
5,797,465 3.1 3 Machine Check Exception (MCE)

1,237 0 4 NVRM DBE
56 0 5 Unknown GPU Error (UGE)

303,149 0.2 6 Graphics Engine Error (GEE)
5,772 0 7 Kernel Panic

783,599 0.4 8 Out of Memory (OOM)
18,181,137 9.7 9 HWERR
1,627,599 0.9 10 Seg. Fault

48,584,034 26 11 Lustre
35,112,479 18.8 12 LNet
1,008,193 0.5 13 LNet Error

16,829,223 9 14 Lanemask Change
116 0 15 Netwatch ERROR

55,701,721 29.8 22 Lustre Error

186,976,725 100

TABLE I: 22 Event types and their occurrences in Titan’s logs
between January 2015 to March 2018

any given time. In other words, the count number plotted in
Figure 1 is the total counts recorded on all Titan nodes within
the past hour prior to the given moment. Note the event counts
of year 2016 is shown only. Other years show a similar trend.

IV. ANALYTIC MODELS

This section describes three projects and their initial inves-
tigation that leverage LogSCAN for analytics. Each workflow
was developed as Jupyter notebooks that interactively perform
analytics through the Spark job server of LogSCAN.

A. Case study 1: Metric to denote system status

From the perspective of pure numeric analysis, the system
status could be represented as a multi-dimensional data set. In
its most crude manifestation, we actually have a 3D data set
which possesses two fixed dimensions along the directions of
event source (19200 distinctive nodes) and type (22 distinctive
event types). To come up with a quantifiable low-dimensional
metric which incorporates as much system information as
possible without a high-dimensional representation, we seek
help from two widely used algorithms: Principal Component
Analysis (PCA) and Information Entropy.

1) PCA Analysis: PCA as a statistical procedure was first
developed by Pearson in 1901 [16]. As a standard ma-
chine learning algorithm, PCA has been widely used in data
preprocessing for the purpose of dimensionality reduction.
The general application of the algorithm lies in finding the
so-called principal components (PCs) in a high-dimensional
feature space. These PCs are essentially a new set of fea-
tures (mathematically speaking, a linear combination of the
originals) which could best represent the original features
by maximizing the feature variance along the directions of
identified PCs.

In our study, we are interested in the relative variances
among all PCs which could reveal the overall degree of feature
correlation. The argument could be more easily understood
by investigating a toy model which has a set of observations



Fig. 1: The total event counts accumulated in each day (plot of year 2016 is shown only)

on two features. If a strong correlation exists between the
two features (like a linear type), it would be obvious to see
that one of the principal component totally dominates the
other. In the case of multi-variable analysis as we are facing
here for the high-dimensional event table, we could apply a
certain standard matrix decomposition procedure on the co-
variance matrix (e.g., Singular Value Decomposition, SVD, as
we used in our study) to obtain all feature variances along the
principal components, and then define a probability vector for
the variances (Equation 1), where σi (i from 1 to k) is the i-th
variance calculated from k eigenvalues of SVD decomposition.

ξi =
σi∑k
1 σi

(1)

The distribution of the variance probability ~ξ may change
dramatically according to the system history prior to any
given moment. Two extremes among these variations deserve
a closer scrutiny because they represent two most distinctive
system statuses. The first is a distribution with a single vari-
ance dominating all others, which simply means all observed
features are highly correlated and could imply they share a
single source of driven force (single user, large-scale applica-
tion, etc.). The other extreme case of probability distribution
is one that has evenly distributed variances along all PCs. On
the contrary to the first case, this even probability distribution
means that each feature is driven by an independent source
(multiple users, applications utilizing different resources, etc.).

Looking back at our original problem, which is “to find
a quantifiable low-dimensional metric incorporating as much
system information as possible without a high-dimensional
representation”, we see that, by applying PCA on the 3D
event table at any given time, the data set is compressed to
a 2D matrix which has the original dimension of time while
compressing the other two (representing the source and type of
the recorded events) into a probability vector of PC variances.
In fact, since the PCA algorithm doesn’t dictate any specifics
about how one arranges the data set in format of records vs.
features, we created a second layout from the original event
table by re-arranging the table in the following way.

The original event table has, for each event type at each
row, the event source and the total counts accumulated in
the 1-hour time window. As described in Section III-B, the

source name complies with the Titan nodal naming convention
and can be mapped to a set of coordinates in the multi-
dimensional grid reflecting the Titan architecture. Given a
source “c16-3c0s4n1,” for example, it directly reads that the
events occurred at “Cabinet, Row 16 by Column 3, Chassis 0,
Slot 4 and Node 1.” Instead of using each single coordinate
as a new feature (it would be rather interesting to explore the
data set in such an extended way, though), we transformed the
set of grid coordinates (Cabinet Row, Cabinet Column,
Chassis, Slot, Node) into a pair of X and Y coordinates
in a 2D layout map. Speaking specifically, we have used

X = 12 ∗ Cabinet Row + 4 ∗ Chassis+Node

Y = 8 ∗ Cabinet Column+ Slot
(2)

in this study to mimic the floor map of Titan. By no means,
this particular schema of nodal mapping is the only (or
“right”) choice among many linear combinations of the grid
coordinates. After the transformation, the event table, at a
given time spot, has two new dimensions of X and Y in
place of the original event source and type. The cell value
at [X , Y ] is filled in with its window-accumulated counts
for either a single event type or several types combined. If all
event types combined, we simply have a 2D nodal map for the
total counts. Referring back to Section III-B about the Titan
architecture which gives 25 rows and 8 columns of cabinets, 3
chassis per cabinet, 8 slots per chassis and 4 nodes per slot, we
know the dimensionality of the new 2D layout (referred to as
“Nodal Map,” hereafter) is fixed at 300 in X’s direction and
64 in Y ’s, which is quite different from the original layout
(referred to as “Source Type”, hereafter), as “Source Type”
has a varying dimensionality along time.

Whether the PCA algorithm is applied on “Source Type”
or “Nodal Map,” the resulting probability vector (Equation 1)
is still not concise enough to be used for a quantifiable low-
dimensional metric. To store the system status in a more com-
pact way, we go to our final step of information compression.

2) Information Entropy: Information Entropy (Shannon
entropy) is, in general, a numeric indicator of the average
amount of non-redundant system information. It was first
developed by Shannon in his seminal paper for the information
theory [17]. In our study, we use the concept of information
entropy to mathematically quantify the information content of
a random signal with a certain probability distribution. Specif-



Fig. 2: Upper Panel (two plots): Historical panorama of the Titan system status illustrated with three time series – information
entropies (H) for the “Source Type” and “Nodal Map” layouts and “total event counts” – from Jan. 1st to 9th of Year 2016.
Bottom Panel (two plots): Close-up of the information entropy of “Source Type” and the corresponding “total event counts”
for a small time period on Jan. 1st, 2016. Plots showing information entropies have a second “y”-axis to their right where the
values of 10H are marked accordingly. All plots share the same time resolution of one minute.

ically, we use the variance probability vector ~ξ calculated via
PCA on layouts of the event table (either “Source Type” or
“Nodal Map”) and define the Information Entropy, H , by
applying the Boltzmann’s formula:

H = −
k∑
1

ξilog(ξi) (3)

By computing H for each event table (no matter what layout
it takes) we further compress the system status along time and
use this time series as the quantifiable low-dimensional metric
that we are searching for. In practice, we are also interested
in the value of 10H . Briefly going back to the two extreme
cases discussed about the variance probability distribution in
Section IV-A1, we see in the first case of single variance
dominance, the information entropy would tend to be zero and
it results in 10H ≈ 1. While when variances are distributed
evenly along all PCs, the information entropy gets close to its
maximum value of log(k) (k is the number of features taken
into account in PCA) and apparently 10H ≈ k.

For illustration purposes, we choose a small section of the
historical panorama demonstrated in Fig. 2 which represents
the system status of Titan supercomputer from “2016-01-
01” to “2016-01-09.” Both layouts are considered in plotting
the information entropy. The two plots on the upper panel
show “Source Type” and “Nodal Map” respond accordingly
to the total event counts at large scale, while differences
between either one of them and the total counts are unmis-
takably standing out at many medium to small time scales.

For example, the overall system status started with a few
“violent” jumps showing on all three curves prior to “2016-
01-01 15:00,” where “Source Type” and “Nodal Map” share
a similar profile which is much less extreme comparing to the
total counts. Another example can be seen during the common
“plateau” which spans one and a half days (from “2016-01-
03 16:00” to “2016-01-05 05:30”). While both “Source Type”
and “Nodal Map” registered similar dips in values as did the
total counts in between “2016-01-04 01:40” and “2016-01-
04 02:40”, at a later time, only “Source Type” responded
significantly to the total counts while “Nodal Map” remained
docile from “2016-01-04 08:50” to “2016-01-04 17:40.”

Much closer scrutiny has to be put to order to explain these
observations of system behaviour and an example is given by
the two close-ups on the lower panel of Fig. 2. Surprisingly, the
time evolution of the two series differs quite a lot, esp. between
the hours of “12:00” and “13:30”. Many similar behavioral
deviations existing among information entropies and the total
events could be attributed to varying contributions of events
to the statistics and much more detailed discussion has been
reported in a separate article. As a robust system status metric,
however, we see that the information entropy sensitively re-
sponds to varieties of driven forces in the system which shape
the general behavior along time in a comprehensive manner,
esp. as the dimensionality of the feature space increases with
the complexity of the system in question.



B. Case study 2: Pattern Mining

Inference of interesting relations between event types helps
understanding or capturing system status. One such approach
is association rule mining [18]. The most computationally
intensive part of association rule mining is to identify frequent
event sets in the data. We define a set of events to be frequent
if they tend to co-occur within the same time window. For this
study, we slide a time window and generate data sets of event
occurrences in each window. The interval and time steps by
which the window is moved need to be chosen carefully to
capture an accurate representation of the time series.

Frequent event sets can be captured from various aspects. If
we do not consider any spatial coherence, all the events that
occurred within a time window are considered for frequent
sets regardless of locations where they are generated. On the
other hand, with spatial coherence as a constraint, events that
occurred on the same node, slots, chassis, or cabinets are
considered for frequent event sets. Fig. 3 gives a pictorial
illustration of the procedures. The set, created with or without
spatial constraint, is then used for mining association rules.
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Fig. 3: Events by month

For this study, we considered events present in the data
of 2016. The log events are dominated by file system events
(lustre with event ID 11 and LNet with ID 12, 33% and 37%
of the data) followed by hardware events (HWERR with ID 9
and 15% of the data). Upon close examination, we found that
the file system and hardware events can be further categorized
into 155 and 66 sub event types, respectively. We are currently
investigating pattern inference for these sub event types.

We first computed correlations of all pairs of 22 events,
which is shown in Table II. The intent was to see whether
two events in a frequent event set are correlated. We also
examined any recurrent temporal patterns. Fig. 4 is one result
that shows the average number of events generated in each
day of the week. As one would expect, the number of events
are higher throughout the work days and slightly less during

the weekends. The exceptionally high number of events on
Tuesdays is interesting. One possible explanation is that a lot
of new jobs are added to the batch job queues on Mondays.
Another possible explanation is that maintenance for OLCF
systems is usually scheduled on Tuesday. Shutting down Titan
might be an explanation for above average system events.
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Fig. 4: Average number of log events by days of the week

We applied the FPGrowth algorithm [19] of the Spark mllib
library to generate frequent event sets. Again, we used the
events of 2016 for this analysis. The support threshold was
set to 0.1 with the window size of 24 hours. Some notable
frequent events are illustrated in Table III. It is not surprising
to find event types LNet (ID 12), LNet Error (ID 13) and Lustre
Error (ID 22) dominating the frequent event sets. Interestingly,
however, none of the frequent event sets contain event type
of kernel panic (ID 7). This is somewhat unexpected since
the statistical analysis suggested a strong correlation between
event Lustre Error and Kernel Panic, that is between 22 and
7 in Table II. One possible explanation for this is that the
kernel panic events occur frequently, but their occurrences are
confined to a small set of nodes. Further analysis of the data
set is necessary to confirm this assumption.

Mining frequent pattern on the dataset is still a work in
progress. We only reported a few findings that were generated
from data that spans a month or less. Therefore the results
listed in Table III are not conclusive.

Another approach to infer interesting patterns from data
is word embedding, which we are currently investigating.
In text mining, this feature embedding algorithm known as
word2vec [20], transforms each word in a vocabulary into
a high dimensional vector space where semantically related
words in a corpus of documents are positioned close to each
other. When applied to log event data, word2vec will identify
event types that appear in vicinity within a time window. This
essentially enables clustering of event types in the transformed
vector space, thus producing patterns whose occurrences are
dominant during a period of interest. We currently plan to
apply word2vec to 155 file system related sub event types to
infer notable event patterns in a much higher resolution.



id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 22

1 1.0 -0.0 -0.0 -0.1 -0.0 -0.0 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.1 -0.0 -0.0
2 -0.0 1.0 0.1 -0.0 -0.0 0.1 -0.0 -0.0 0.0 -0.0 0.0 0.1 0.0 -0.0 -0.0
3 -0.0 0.1 1.0 -0.0 0.1 0.0 -0.1 -0.0 0.0 0.0 -0.1 -0.0 -0.0 -0.0 -0.1
4 -0.1 -0.0 -0.0 1.0 -0.0 0.0 0.0 0.1 -0.0 -0.0 0.1 0.1 0.0 -0.1 0.1
5 -0.0 -0.0 0.1 -0.0 1.0 -0.0 -0.0 -0.1 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0
6 -0. 0.1 0.0 0.0 -0.0 1.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.1 -0.1 -0.0 -0.0
7 -0.0 -0.0 -0.1 0.0 -0.0 -0.0 1.0 -0.0 -0.0 -0.0 0.4 0.0 0.1 -0.0 0.7
8 -0.0 -0.0 -0.0 0.1 -0.1 -0.0 -0.0 1.0 -0.0 -0.0 -0.1 -0.0 0.0 -0.1 -0.0
9 -0.0 0.0 0.0 -0.0 -0.0 -0.0 -0.0 -0.0 1.0 -0.0 0.1 0.1 0.0 -0.0 0.0

10 0.0 -0.0 0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 1.0 -0.0 -0.0 0.0 -0.0 0.1
11 -0.0 0.0 -0.1 0.1 -0.0 -0.0 0.4 -0.1 0.1 -0.0 1.0 0.5 0.1 0.0 0.4
12 0.0 0.1 -0.0 0.1 -0.0 -0.1 0.0 -0.0 0.1 -0.0 0.5 1.0 0.3 -0.0 0.1
13 0.1 0.0 -0.0 0.0 -0.0 -0.1 0.1 0.0 0.0 0.0 0.1 0.3 1.0 -0.1 0.1
14 -0.0 -0.0 -0.0 -0.1 -0.0 -0.0 -0.0 -0.1 -0.0 -0.0 0.0 -0.0 -0.1 1.0 -0.0
22 -0.0 -0.0 -0.1 0.1 -0.0 -0.0 0.7 -0.0 0.0 0.1 0.4 0.1 0.1 -0.0 1.0

TABLE II: Correlation matrix for the different events

items frequency

12, 11 56741
3, 12, 11 3813

22, 12, 11 18481
10, 11 2859

9, 12 2693
2, 9 8501

TABLE III: Frequent events for June 2016 (support = 0.01)

C. Case Study 3: Correlation analysis of jobs executions and
event occurrences

LogSCAN provides the ability to do analyses on log data
generated from multiple sources. In addition to event data
as described earlier, our database is also able to ingest data
from the Cray Application Level Placement Scheduler (ALPS)
infrastructure. ALPS records information such as the binary
name of each executed job, the start/end date/time of each
job, and the nodes on which each job was scheduled. In
this case study, we analyze the characteristics of jobs which
have events recorded during their executions by correlating
data from the events database (Table I) with data from the
application placement and scheduling database. Furthermore,
we present preliminary analysis to understand the impact of
multiple types of events on the execution times of jobs which
is beneficial for highlighting system components responsible
for performance variations observed in large-scale systems.

We have about one year worth of data from the ALPS
infrastructure, i.e., from 2015-12-24 13:00 to 2017-02-13
17:00. Using the events database stored in Cassandra, we intent
to extract job executions from the application database (also
stored in Cassandra) during which events are recorded. The
applications database contains space and time information of
the jobs, whereas the events database contains space and time
information of the events. The two databases are conditionally
joined via SQL style queries in Cassandra through the Spark
interface. The join conditions check for each application the
conditions that an event occurring on any of the nodes on
which the application is scheduled also occurs within the start
and end date/time of the application. A limitation of this study
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Fig. 5: The histograms of execution times (with a logarithmic
y-axis) of all jobs and jobs which only had events. The com-
parison of the two plots demonstrates an increased likelihood
of event occurrence for lengthier job executions.
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Fig. 6: The histograms of number of nodes used (with a
logarithmic y-axis) by all jobs and jobs which only had events.
The comparison of the two plots demonstrates an increased
likelihood of event occurrence for larger sized jobs.

is that we are not able to correlate network related events IDs
14 and 15 in Table I with any application execution, since
these events are recorded on the Gemini routers in Titan. We
will investigate this further in future work.

After the conditional join between the jobs and events
databases, we are able to obtain a database which contains
job executions with event occurrences. We find that about 68
thousand jobs (3.24%) out of 2.1 million total jobs (within our
analysis period) had events recorded during their execution.
We further distinguish the characteristics of these jobs by
plotting the histograms of execution times (Fig. 5) and number
of nodes (Fig. 6) used for these jobs and comparing them
to corresponding histograms of all job executions irrespective



of whether an event takes place or not. We find that job
executions with events tend to be lengthier in time and larger
in size. For example, the 98th percentile for job execution
times is shifted from 10,000 seconds to over 42,000 seconds
when events take place during executions. Similarly, the 98th
percentile for job sizes is shifted from 700 nodes to 7500
nodes when events take place during executions. In part, the
histograms explain the reason for low percentage of jobs which
have recorded events.

We conduct correlation analysis to determine whether long
running and large sized jobs produce more events or whether
increased number of events lead to increased execution times
as a result of the overhead of the logging infrastructure.
Specifically, we calculate the correlation coefficients between
the number of events recorded in each job, and job execution
times, job sizes and core-hours to reflect both, the length and
size of jobs. We further segregate our analysis into multiple
event classes based on different components of the system.
This allows us to see how application execution times may be
impacted by different event classes or alternatively, explore
the possibility of using job length or size as an indicator of
observing events from a certain class. We categorize events
into following broad categories: (1) all Lustre related events
(IDs 1, 11, 13 and 22) excluding Lustre network status event
(ID 12), (2) all GPU events (IDs 2, 4 and 5), (3) hardware
and software related events on processors excluding MCEs
(IDs 6, 7 and 9), (4) machine check exceptions (ID 3), and,
(5) pure software issues on processors including segmentation
faults and out of memory errors (IDs 8 and 10). Note, in
some cases, a combination of different event categories is
observed which is not segregated in our analysis. The obtained
Spearman correlation coefficients for each case are listed in
Table IV. An example plot of number of core-hours vs. number
of events observed for pure software events is shown in Fig. 7.

The results in Table IV show that there is very small correla-
tion between the number of all events class and both execution
times and job sizes. Similarly, Lustre events show very weak
correlation with both length and size of jobs. On the other
hand, GPU events, processor hardware and software events,
and pure software events seem to be moderately correlated
with the size of jobs (coefficient greater than 0.5). Similarly,
GPU events and processor hardware and software events, and
MCE events seem to have low correlation with execution times
of applications (coefficients between 0.3 and 0.5). In summary,
the preliminary analysis did not find any single dominant
event class which may have a significant impact on application
execution times. In other words, increase in number of events
does not imply an increase in execution time, which shows
that the logging infrastructure does not add overheads to the
execution of the jobs. Additionally, job sizes or lengths are
not strong indicators for correlating occurrence of events to
different system components. In future work, we plan to use
LogSCAN to perform a much focused analysis by quantifying
performance variations across application executions of same
types and determining correlations with different event classes.

TABLE IV: Spearman correlation coefficients between various
event classes and job execution times, sizes, and core-hours

Event Class Execution Time Job Size Core-hours

All Events 0.249 0.129 0.310
Lustre Events 0.236 0.285 0.354
MCE Events 0.297 0.258 0.480
Processor HW/SW 0.440 0.523 0.599
Pure SW Events 0.272 0.548 0.570
GPU Events 0.476 0.526 0.614
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Fig. 7: Plot of execution times of jobs with number of
Processor HW/SW events illustrating that a higher event count
does not strongly imply an increase in execution time of jobs.

V. CONCLUSION AND FUTURE WORKS

This paper introduces how LogSCAN, a Big Data process-
ing framework for HPC logs, is utilized by three analytic
case studies. The tasks of these case studies require multiple
scans of the entire database, creating a series of input data
for subsequent analytics and visualization. This paper thus
demonstrates the compute and memory intensive computations
for the designated analytics can be performed efficiently by
leveraging distributed NoSQL database technology and the
MapReduce paradigm. However, these tasks are still under
development, thus the analytic results and the original logs
need to be further evaluated and studied.

We plan to extend LogSCAN in several directions. First, a
new design to support analysis on raw logs is under devel-
opment. This will particularly facilitate identification of new
event types by applying text mining algorithms to the original
raw logs. Second, incorporating GPU-enabled compute nodes
and a deep learning framework, such as Deep Water, the AI
extension to H2O [21], into the LogSCAN is under review.
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