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Background

• HPC Reliability, Availability, and Serviceability (RAS) Logs are 
valuable resources to obtain clues for system status, failures (or 
system anomalies), performance degradation, etc.

• Many researchers want access to logs, However …
• Data are often heterogeneous, unstructured, huge in volume,  ant not stored 

in database for retrieval.

• ORNL’s Log processing by Spark and Cassandra-based ANalytics
(LogSCAN) is designed to allow numerous researchers to perform 
their log analytics

• This presentation introduces LogSCAN and three example use 
cases.
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LogSCAN: Design Principle 

• Scalability
– Database should be capable of accommodate ever-increasing volume of data

• Low latency and High availability
– Should serve interactive analytics and near real-time query requests.
– Should survive failure. 

• Flexibility
– Should represent various types of events 

• Time series friendly
– Time series analytics over an arbitrary time interval 



4 Presentation name

Data Model with Redundancy for Efficient Retrieval
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Spark: Computation Model for Cassandra

• To maximize locality, a spark node is 
installed in each Cassandra node.
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LogSCAN Architecture
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Three Analytic Example Use Cases

• System Information Entropy (SIE)

– To represent system status by a simple metric

• Event correlation and frequent pattern

– To identify correlated event types in their occurrences

• Characterizing application runs in terms of events

– To study any malignant correlation between events and application runs

• All accessed LogSCAN using

– R, python, and Jupyter Notebook
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Data: Titan Logs between January 2015 and March 2018.

Summary of Event 
Types and Their 
Occurrences.
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Event Occurrences: Bird’s Eye View
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How Do We Represent Event Occurrences by a Simple 
Metric?

Each event has the source, i.e. where it occurs.
This spatial information should also be considered.

• Amount of event occurrences
• Types of events that occur
• Location of events

system 
information 

entropy
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System Information Entropy: SIE
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Composition of Events into two Tables

Source vs Type

The nodal map for total 
events. The layout has 
dimensions of [300, 64] in 
pixel and each pixel 
represents a unique Titan 
node with its coordinates 
[X, Y] translated from the 
equation.

Nodal Map

! = 12×&'()*+,-./ + 4 × Chassis + Node
Y = 8×&'()*+,1.2345 + Slot

Example table where each row is frequencies of event 
types occurred at a compute node, and each column
is event type.
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Source Type SIE Zoomed View SIEs



14 Presentation name Titan nodal layouts between 18:30 and 22:00 at interval of 30 mins

Nodal Map SIE Zoomed View
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Frequent Item set Mining

Frequent events for June 2016 (support = 0.01) 

id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 22

1 1.0 -0.0 -0.0 -0.1 -0.0 -0.0 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.1 -0.0 -0.0
2 -0.0 1.0 0.1 -0.0 -0.0 0.1 -0.0 -0.0 0.0 -0.0 0.0 0.1 0.0 -0.0 -0.0
3 -0.0 0.1 1.0 -0.0 0.1 0.0 -0.1 -0.0 0.0 0.0 -0.1 -0.0 -0.0 -0.0 -0.1
4 -0.1 -0.0 -0.0 1.0 -0.0 0.0 0.0 0.1 -0.0 -0.0 0.1 0.1 0.0 -0.1 0.1
5 -0.0 -0.0 0.1 -0.0 1.0 -0.0 -0.0 -0.1 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0
6 -0. 0.1 0.0 0.0 -0.0 1.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.1 -0.1 -0.0 -0.0
7 -0.0 -0.0 -0.1 0.0 -0.0 -0.0 1.0 -0.0 -0.0 -0.0 0.4 0.0 0.1 -0.0 0.7
8 -0.0 -0.0 -0.0 0.1 -0.1 -0.0 -0.0 1.0 -0.0 -0.0 -0.1 -0.0 0.0 -0.1 -0.0
9 -0.0 0.0 0.0 -0.0 -0.0 -0.0 -0.0 -0.0 1.0 -0.0 0.1 0.1 0.0 -0.0 0.0

10 0.0 -0.0 0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 1.0 -0.0 -0.0 0.0 -0.0 0.1
11 -0.0 0.0 -0.1 0.1 -0.0 -0.0 0.4 -0.1 0.1 -0.0 1.0 0.5 0.1 0.0 0.4
12 0.0 0.1 -0.0 0.1 -0.0 -0.1 0.0 -0.0 0.1 -0.0 0.5 1.0 0.3 -0.0 0.1
13 0.1 0.0 -0.0 0.0 -0.0 -0.1 0.1 0.0 0.0 0.0 0.1 0.3 1.0 -0.1 0.1
14 -0.0 -0.0 -0.0 -0.1 -0.0 -0.0 -0.0 -0.1 -0.0 -0.0 0.0 -0.0 -0.1 1.0 -0.0
22 -0.0 -0.0 -0.1 0.1 -0.0 -0.0 0.7 -0.0 0.0 0.1 0.4 0.1 0.1 -0.0 1.0

TABLE II: Correlation matrix for the different events

items frequency

12, 11 56741
3, 12, 11 3813

22, 12, 11 18481
10, 11 2859

9, 12 2693
2, 9 8501

TABLE III: Frequent events for June 2016 (support = 0.01)

C. Case Study 3: Correlation analysis of jobs executions and
event occurrences

LogSCAN provides the ability to do analyses on log data
generated from multiple sources. In addition to event data
as described earlier, our database is also able to ingest data
from the Cray Application Level Placement Scheduler (ALPS)
infrastructure. ALPS records information such as the binary
name of each executed job, the start/end date/time of each
job, and the nodes on which each job was scheduled. In
this case study, we analyze the characteristics of jobs which
have events recorded during their executions by correlating
data from the events database (Table I) with data from the
application placement and scheduling database. Furthermore,
we present preliminary analysis to understand the impact of
multiple types of events on the execution times of jobs which
is beneficial for highlighting system components responsible
for performance variations observed in large-scale systems.

We have about one year worth of data from the ALPS
infrastructure, i.e., from 2015-12-24 13:00 to 2017-02-13
17:00. Using the events database stored in Cassandra, we intent
to extract job executions from the application database (also
stored in Cassandra) during which events are recorded. The
applications database contains space and time information of
the jobs, whereas the events database contains space and time
information of the events. The two databases are conditionally
joined via SQL style queries in Cassandra through the Spark
interface. The join conditions check for each application the
conditions that an event occurring on any of the nodes on
which the application is scheduled also occurs within the start
and end date/time of the application. A limitation of this study

Fig. 5: The histograms of execution times (with a logarithmic
y-axis) of all jobs and jobs which only had events. The com-
parison of the two plots demonstrates an increased likelihood
of event occurrence for lengthier job executions.

Fig. 6: The histograms of number of nodes used (with a
logarithmic y-axis) by all jobs and jobs which only had events.
The comparison of the two plots demonstrates an increased
likelihood of event occurrence for larger sized jobs.

is that we are not able to correlate network related events IDs
14 and 15 in Table I with any application execution, since
these events are recorded on the Gemini routers in Titan. We
will investigate this further in future work.

After the conditional join between the jobs and events
databases, we are able to obtain a database which contains
job executions with event occurrences. We find that about 68
thousand jobs (3.24%) out of 2.1 million total jobs (within our
analysis period) had events recorded during their execution.
We further distinguish the characteristics of these jobs by
plotting the histograms of execution times (Fig. 5) and number
of nodes (Fig. 6) used for these jobs and comparing them
to corresponding histograms of all job executions irrespective
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Event Correlation
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Events and Application Runs 

• Application run data of LogSCAN includes
– Application name of each executed job, 
– The start/end date/time of each job, 
– The nodes on which each job was scheduled. 

• In this case study, we analyze the characteristics of applications by 
correlating this information with events recorded on the compute 
nodes during their executions. 

• This is done by conditional join of events and application data.
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The histograms of number of nodes used (with 
logarithmic y-axis)

The histograms of number of nodes used (with a logarithmic y-axis) by all 
jobs and jobs which only had events. The comparison of the two plots 
demonstrates an increased likelihood of event occurrence for larger sized 
jobs.
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Histograms of Execution Times (with Logarithmic Y-Axis)

The histograms of execution times (with a logarithmic y-axis) of all jobs and jobs which 
only had events. The comparison of the two plots demonstrates an increased likelihood of 
event occurrence for lengthier job executions.
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Correlation Study per Event Group

1. All Events

2. Lustre related events (IDs 1, 11, 13 
and 22) excluding Lustre network 
status event (ID 12), 

3. Machine check exceptions (ID 3)

4. Hardware and software related 
events on processors excluding 
MCEs (IDs 6, 7 and 9), 

5. Pure software issues on processors 
including segmentation faults and out 
of memory errors (IDs 8 and 10).

6. GPU events (IDs 2, 4 and 5), 

of whether an event takes place or not. We find that job
executions with events tend to be lengthier in time and larger
in size. For example, the 98th percentile for job execution
times is shifted from 10,000 seconds to over 42,000 seconds
when events take place during executions. Similarly, the 98th
percentile for job sizes is shifted from 700 nodes to 7500
nodes when events take place during executions. In part, the
histograms explain the reason for low percentage of jobs which
have recorded events.

We conduct correlation analysis to determine whether long
running and large sized jobs produce more events or whether
increased number of events lead to increased execution times
as a result of the overhead of the logging infrastructure.
Specifically, we calculate the correlation coefficients between
the number of events recorded in each job, and job execution
times, job sizes and core-hours to reflect both, the length and
size of jobs. We further segregate our analysis into multiple
event classes based on different components of the system.
This allows us to see how application execution times may be
impacted by different event classes or alternatively, explore
the possibility of using job length or size as an indicator of
observing events from a certain class. We categorize events
into following broad categories: (1) all Lustre related events
(IDs 1, 11, 13 and 22) excluding Lustre network status event
(ID 12), (2) all GPU events (IDs 2, 4 and 5), (3) hardware
and software related events on processors excluding MCEs
(IDs 6, 7 and 9), (4) machine check exceptions (ID 3), and,
(5) pure software issues on processors including segmentation
faults and out of memory errors (IDs 8 and 10). Note, in
some cases, a combination of different event categories is
observed which is not segregated in our analysis. The obtained
Spearman correlation coefficients for each case are listed in
Table IV. An example plot of number of core-hours vs. number
of events observed for pure software events is shown in Fig. 7.

The results in Table IV show that there is very small correla-
tion between the number of all events class and both execution
times and job sizes. Similarly, Lustre events show very weak
correlation with both length and size of jobs. On the other
hand, GPU events, processor hardware and software events,
and pure software events seem to be moderately correlated
with the size of jobs (coefficient greater than 0.5). Similarly,
GPU events and processor hardware and software events, and
MCE events seem to have low correlation with execution times
of applications (coefficients between 0.3 and 0.5). In summary,
the preliminary analysis did not find any single dominant
event class which may have a significant impact on application
execution times. In other words, increase in number of events
does not imply an increase in execution time, which shows
that the logging infrastructure does not add overheads to the
execution of the jobs. Additionally, job sizes or lengths are
not strong indicators for correlating occurrence of events to
different system components. In future work, we plan to use
LogSCAN to perform a much focused analysis by quantifying
performance variations across application executions of same
types and determining correlations with different event classes.

TABLE IV: Spearman correlation coefficients between various
event classes and job execution times, sizes, and core-hours

Event Class Execution Time Job Size Core-hours

All Events 0.249 0.129 0.310
Lustre Events 0.236 0.285 0.354
MCE Events 0.297 0.258 0.480
Processor HW/SW 0.440 0.523 0.599
Pure SW Events 0.272 0.548 0.570
GPU Events 0.476 0.526 0.614

Fig. 7: Plot of execution times of jobs with number of
Processor HW/SW events illustrating that a higher event count
does not strongly imply an increase in execution time of jobs.

V. CONCLUSION AND FUTURE WORKS

This paper introduces how LogSCAN, a Big Data process-
ing framework for HPC logs, is utilized by three analytic
case studies. The tasks of these case studies require multiple
scans of the entire database, creating a series of input data
for subsequent analytics and visualization. This paper thus
demonstrates the compute and memory intensive computations
for the designated analytics can be performed efficiently by
leveraging distributed NoSQL database technology and the
MapReduce paradigm. However, these tasks are still under
development, thus the analytic results and the original logs
need to be further evaluated and studied.

We plan to extend LogSCAN in several directions. First, a
new design to support analysis on raw logs is under devel-
opment. This will particularly facilitate identification of new
event types by applying text mining algorithms to the original
raw logs. Second, incorporating GPU-enabled compute nodes
and a deep learning framework, such as Deep Water, the AI
extension to H2O [21], into the LogSCAN is under review.
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Conclusion

• Three use cases of performing analytics using LogSCAN are 
presented demonstrating:
– All examples cases utilize scalable data model for efficient retrieval from 

various perspectives.
– Analytic results are also interesting, but require further study for verification 

and interpretation.
– Two use cases have been submitted as individual manuscripts.

• As exascale system coming available, LogSCAN will play an 
important role in understanding system health, status, and utilization.
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