Blue Gene/L Log Analysis
and Time To Interrupt Estimation

Narate Taerat', Nichamon Naksinehaboon', Clayton Chandler', James Elliott',
Chokchai (Box) Leangsuksun', George Ostrouchov?, Stephen L. Scott’, Christian Engelmann®

!College of Engineering & Science

Louisiana Tech University
Ruston, LA 71270, USA
2Computer Science and Mathematics Division, Oak Ridge National Laboratory
Oak Ridge, TN 37831, USA

{nta008, nna003, cfc004,
{ostrouchovg, scottsl,

Abstract— System- and application-level failures could be
characterized by analyzing relevant log files. The resulting data
might then be used in numerous studies on and future
developments for the mission-critical and large scale
computational architecture, including fields such as failure
prediction, reliability modeling, performance modeling and
power awareness. In this paper, system logs covering a six month
period of the Blue Gene/L supercomputer were obtained and
subsequently analyzed. Temporal filtering was applied to remove
duplicated log messages. Optimistic and pessimistic perspectives
were exerted on filtered log information to observe failure
behavior within the system. Further, various time to repair
factors were applied to obtain application time to interrupt,
which will be exploited in further resilience modeling research.

INTRODUCTION

A common goal in studies done on resilience provision
within high performance computing (HPC) distributions is the
development of an effective reliability, availability, and
serviceability (RAS) logging and monitoring framework for
detecting, circumventing, and quickly recovering from system
and application failures. However, before this can begin, it is
critical that the developers first characterize potential failure
scenarios. This includes creating working definitions of these
failures and developing a sound understanding of the
structural semantics and dependencies located within the
target architecture.

The multiple computational nodes within an HPC
environment, much like those found in any other architectural
permutation, output various information via system- and
application-level log files. However, there are a number of
hurdles encountered when attempting to mine this information
in an effort to better understand failure characteristics and
capture system health indicators:

* There is no standardized design method for culling RAS
information from these files, nor is there a standard means of
arranging the data. In particular, the dominant cluster
computing model has the potential for any number of
divergent processor and other technologies. Various
manufacturers and operating systems, amongst other

jje01ll, box}e@latech.edu
engelmannc}@ornl.gov

discrepancies, lead to diverse, sometimes radically different
log formats amongst nodes. This is a major obstacle in
identifying overall environmental health, as, without another
level of abstraction above the various node-specific reporting
modules, performing any detailed comparisons between
individual system components proves very cumbersome.

* In most systems, mostly performance with proprietary
RAS metrics pertaining to individual nodes or components
within the individual machines are logged, and as such, no
multi-component or system-wide performance indicators are
currently used in formulating log data. These are often crucial
values that must be taken into consideration when formulating
a given system’s overall health and viability.

In order to develop a working dataset that is both tangible
and rich in failure and performance information, our team
obtained a number of system logs from existing large- and
extreme-scale HPC deployments. Blue Gene/L, a well-known
IBM supercomputing system, is an extreme-scale HPC
machine which strictly adheres to many of the core design
principles of high performance computing and, as such, serves
as a worthy target architecture for HPC failure prediction.
Contained in the 710 MB, 4,747,963 line file is performance
and error information covering a six month period, from June
3“1, 2005 to January 4“1, 2006. What follows is the result of an
examination of the requisite HPC architectural components
and log file structure of the Blue Gene/L machine, with a
focus on the system- and application-level failure information
embedded within this data.

The following section discusses related work in the field of
log file filtering techniques, and Section 3 describes the
characteristics of the Blue Gene/L log file. Section 4 presents
our log analysis and observations. Section 5 accounts for the
time to interrupt estimation, and, finally, Section 6 concludes
the study and provides a brief overview of our future
resilience modeling study.

RELATED WORK

A thorough understanding of the failure behavior exhibited
by large-scale HPC systems is essential when working to
produce accurate results in areas such as failure prediction and
reliability analysis. As log files are often the exclusive
repository for system health information, log analysis is an
unavoidable process in the production of accurate and reliable
failure behavior knowledge. However, only a small number of
large-scale HPC system log files are available to the public[7].
Consequently, there are few studies which perform log
analysis on large-scale HPC systems. Nevertheless, there are
some existing works available to the public.

One key element in each of the studies currently available
is the method by which the log files are mined and filtered
[1[3][8]. Filtering the files is essential because components
within the system may report errors autonomously. This
modular nature of large-scale system and software fault
notification can lead to a single error being reported hundreds
or possibly millions of times [1][13], or a lone error triggering
a flood of error messages from every component in the
system[1]. These cases lead to two fundamental filtering
methods: spatial, that is, filtering by component [2][4], and
temporal, which is filtering based on some time threshold
[1][2][4]. In the latter, a large threshold increases the chance
of removing two entirely different events that could be tagged
as duplicates. On the other hand, a small threshold drastically
increases the number of reported false positives [8].

Sahoo et al [8] collected log files from heterogeneous
servers at IBM Thomas J. Watson Research Center over a one
year time period, and suggested a fair failure threshold of 5
minutes based on gathered information. Liang et al [3]
processed the Blue Gene/L prototype log file over a period of
84 days using Spatio-Temporal Filtering (STF). STF works by
utilizing a number of techniques: extracting and categorizing
failure events, removing duplicate messages from the same
location (temporal filtering), and finally coalescing failure
messages originating from the same error across different
locations (spatial filtering). Using this method, the number of
messages was reduced by 99.96%. Furthermore, Liang et al.
[2]developed a semantic filtering algorithm, called Adaptive
Semantic Filtering (ASF), which extended STF by building a
keyword dictionary, translating each message into a vector,
and computing the correlation between vectors.

Oliner and Stearley [1] analyzed log files obtained from
five HPC systems: Blue Gene/L, Spirit, Red Storm,
Thunderbird, and Liberty, and identified alert messages in the
log files by consulting with system administrators. While
analyzing the Blue Gene/L system they found that the severity
field of the log messages performed poorly as an alert
indicator, and, as such, incorporating this metric into the
failure identification algorithm produced a false negative rate
of 0%, and a false positive rate of 59% [2]. Gujrati et al [4]
developed a meta-learning failure predictor and applied it to
the Blue Gene/L systems at Argonne National Laboratory and
the San Diego Supercomputer Center. To filter the log files,

they applied both temporal and spatial filtering techniques
with a 5-minute duplicate message elimination threshold.

In this paper, we study pessimistic and optimistic
perspectives of Blue Gene/L failure behavior by
experimenting with different filtering parameters and
examining the resulting failure patterns. In addition, we
further investigate time to repair (TTR) and its sensitivity to
obtain application time to interrupt (TTI).This allows us to
obtain an accurate range the TTI for which may then be used
in further studies such as resource allocation and
checkpoint/restart algorithm development.

CHARACTERISTICS OF THE BLUE GENE/L LOG FILE

According to the Top500 supercomputing site [9], the IBM
Blue Gene/L system, located at Lawrence Livermore National
Laboratory (LLNL), is currently the largest supercomputer in
existence. The system is presently comprised of 106,496 dual-
processor compute nodes, totaling 212,992IBM PowerPC
cores, of which 67% contain 512 MB of RAM and 33%
contain 1 GB. The system also utilizes 1664 1/0O nodes,
contributing 1.89 PB in total disk space[6]. Within the Blue
Gene/L architecture, each rack is divided into two parts: a top
midplane and a bottom midplane. Each part contains 16 node
cards, each compromised of multiple components: 1 service
card, 4 link cards, 32 compute nodes, and 4 optional I/O nodes
[5]

For this study the Blue Gene/L system logs from June 3",
2005 to January 4™, 2006 were observed. For approximately
the first two months of this process, the system was comprised
of 32,768 dual-processor nodes. For the remainder of the
study, the system was comprised of 65,536 nodes. During this
time, there were 4,747,963 messages sent to the log, with each
message containing the time, location, RAS or NULL, facility,
severity, and event description information shown in Figure 1.
Locations are denoted by codes which represent a particular
hardware component, such as a compute node (R00-M0-NO-
C:J02-U01), an I/O node (R22-M0-NO-I:J18-U01), a service
card (R22-MO0-S), a link card (R00-M1-L1), a node card (R0O0-
MO0-N0), a midplane in a rack (R00-MO), or a rack at the 2™
position in the 1% row (RO1).

The facility variable, found in every log entry, indicates the
hardware or service affected by the corresponding reported
event [4]. This value can be characterized into one of 10
types: MMCS, APP, KERNEL, LINKCARD, DISCOVERY,
MONITOR, HARDWARE, CMCS, BGLMASTER, and
SERV_NET. MMCS stands for midplane management and
control service, and CMCS stands for core management and
control system. KERNEL indicates events related to hardware
instruction and data manipulation. DISCOVERY is a service
that monitors hardware changes. MONITOR is another
control system component which provides various hardware
status metrics, such as temperature. BGLMASTER is a
service that controls the MMCS. Also reported in the log
messages are 6 severity levels: INFO, WARNING, SEVERE,
ERROR, FATAL, and FAILURE.

Figure | Message Examples

2005-08-02-17.
2005-08-02-18.
2005-08-02-18.05.
2005-08-02-18.05.
2005-08-03-13.34.
2005-08-10-09.09.
2005-08-12-07.20.

13.
05.

18.545821
32.652047
42.661358
47.668332
51.000398
58.139632
27.921676

NULL
NULL
NULL
NULL
NULL
NULL
NULL

RAS
RAS
RAS
RAS
RAS
RAS
RAS

BGLMASTER
BGLMASTER
BGLMASTER
BGLMASTER
BGLMASTER
BGLMASTER
BGLMASTER

FAILURE
FAILURE
FAILURE
FAILURE
FAILURE
FAILURE
FAILURE

TABLE 1 NUMBER OF MESSAGES PER FACILITY

Facility Number of Messages
MMCS 88,930
APP 228,536
KERNEL 4,324,967
LINKCARD 1,170
DISCOVERY 97,172
MONITOR 1,681
HARDWARE 5,148
CMCS 211
BGLMASTER 145
SERV_NET 3

TABLE 2 NUMBER OF MESSAGES PER SEVERITY LEVEL

Severity Level Number of Messages
INFO 3,735,823
WARNING 23,357
SEVERE 19,213
ERROR 112,355
FATAL 855,501
FAILURE 1,714

As outlined in Table 1 and Table 2, 91% of messages
contained in the log are generated by the KERNEL facility,
and 79% of messages are of the INFO severity level, so we
can infer that most KERNEL messages are of INFO severity.
Also, 2% of all messages were generated by the
DISCOVERY, MONITOR, and HARDWARE facilities,
which indicate hardware abnormality, and 4% of all log data
was generated by APP. Therefore, we can also infer that
application failures are more likely to occur than hardware
failures. However, this assumption needs further observations
to verify.

We disregard messages originating from the INFO,
WARNING, SEVERE, and ERROR severity levels because
our goal is to exclusively analyze the Blue Gene/L failure
behavior. The FAILURE level was analyzed because, in this
log, the messages in this level were produced only by the
hardware monitoring facilities (BGLMASTER and
MONITOR). Also, during the failure identification process we
observed that there are some event descriptions labeled with
FATAL severity that indicate non-fatal events, such as “panic:
-stopping execution”. As such, we assumed that all failure
events were located within the FATAL or FAILURE severity
levels. Details of the data cleaning process are found in the
following section.

mmes_server exited normally with exit code 1
idoproxy exited normally with exit code 0
mmes_server exited normally with exit code
ciodb exited normally with exit code 153
mmes_server exited normally with exit code 15
mmes_server exited normally with exit code 15
ciodb exited abnormally due to signal: Aborted

15

BLUE GENE/L LOG ANALYSIS AND ITS OBSERVATIONS

After the messages tagged with severity levels other than
FATAL and FAILURE were discarded, the total number of
messages located within the log was reduced to 857,215,
which is around 18.05% of the total number of original
messages. Of these, only 0.2% are tagged as FAILURE-level.
Next, we generated and studied a statistical summary of the
time between FATAL messages and time between FAILURE
messages. The results are presented in Table 3.

TABLE 3 BLUE GENE/L TIME BETWEEN FATAL OR FAILURE MESSAGES
SUMMARY

Time Between FATAL Messages

Number of messages 855,501

Minimum 0 second

Maximum 303,553 seconds = 3.5 days
Mean 21.683 seconds

Median 0 second

Time Between FAILURE Messages

Number of messages 1,714

Minimum 0 second

Maximum 3,382,246 seconds = 39 days
Mean 8192.715 seconds =~ 2.28 hours
Median 0 second

The resulting mean suggests that FATAL and FAILURE
messages are generated at an incredibly high frequency.
Further, a median value of 0 seconds for both time between
FATAL messages and time between FAILURE messages
confirms that more than half of these messages are generated
at almost the same time.

After further analysis, it was found that there existed a
number of FATAL-tagged messages that did not, in fact,
suggest legitimate failures. For example, “guaranteed data
cache block touch”, “store operation..................1", and
“instruction address space...... 0 are all tagged as FATAL,
but do not result in the system entering a compromised state.
However, many other messages—such as “Power
deactivated”, “kernel terminated” and “Lustre mount
FAILED "—strongly suggested traceable failures.

In addition, it was discovered that in many cases, a single
FATAL and FAILURE message is repeatedly and massively
reported. For example, 346 FAILURE entries, containing the
message “‘Temperature Over Limit on link card’ were
repetitively reported from 2005-11-07-12.28.58 to 2005-11-
07-12.37.20 (over 502 seconds). The message was generated
almost every two seconds.

Thus, before any further processing, the repeated messages
should be discarded, and only the initial message indicating
the event should be retained.

Definition A latter message (M2) is said to be a repetition of
an original message (M1) if and only if:

i) M1 has the same text description as M2,

ii) both M1 and M2 are generated from the same
source,
the time within which both M1 and M2 are sent to
the log is less than a given time threshold, or there
is a message M* such that M2 is the repeated
message of M* and M* is the repeated message of
M1

Please note that this repetitive relationship between
messages has a transitive property. That is, if we have a set of
three identical messages M1, M2 and M3, with M2 being a
repetition of M1 and M3 being a repetition of M2, then M3
will also be message repetition of M1. This technique may be
referred as temporal filtering (filter by time).

Various time thresholds for conducting repeated message
elimination are also investigated. Amazingly, after applying
time thresholds, varying from 1 second to 9 hours, the
resulting datasets are identical to one another. This indicates
that there is no two identical events (determined by the
messages) occurring at the same node in 9-hour period.

After performing repeated message elimination for each
source, we then further analyzed the log files by manually
obtaining all message patterns, some of which listed in Table
4 and TaBLE 5 at the end of this manuscript. There are 256 total
message patterns at the FATAL and FAILURE severity levels,
which are available online at [14]. However, unlike other
system log studies, spatial filtering—which combines similar
failures generated by physically close nodes—is not
conducted as we might lose some detail by doing so.

iii)

Node ID

20000 40000 60000 80000
[

(O

T T T T
1.120e+09 1.125e+09 1.130e+09 1.135e+09

0
|

Unix timestamp

Figure 2 Scatter plot of message occurrence in the dataset BEST. Darker area
illustrates more message density.

Through further observation, we found that some messages
strongly suggest failure events, some convincingly suggest
non-failure, and the rest are undetermined. The messages
suggesting failure events are listed in Table 4 (21,755 total
messages with 24 patterns), and the messages suggesting non-
failure events are shown in TaBie 5 (149,483 total messages
with 41 patterns). We further estimate Blue Gene/L failure
behavior. The failure behavior can be estimated by
determining the worst expected behavior, and the best
expected behavior as defined below.

The best expected failure behavior could be obtained by
selecting only messages that suggest failure, and discarding all
messages that suggest undetermined or non-failure. In reality,
some undetermined messages might indicate failure. So,
optimistically discarding all of them is the best case of system
behavior. We call the best expected failure behavior dataset
BEST.

On the other hand, the worst expected failure behavior can
be determined by selecting messages that suggest failure, and
pessimistically treating all undetermined messages as failure
indicators. This dataset is then composed of both the failure
suggesting messages and all undetermined messages. The
worst expected failure behavior dataset is called WORST.

After the datasets BEST and WORST were formed, we
studied message frequency in both datasets. The scatter plots
in Figure 2 and Figure 4 illustrate the occurrence of messages
in the BEST and WORST datasets, respectively. In both
graphs, the x-axes denote the UNIX timestamp, and the y-axes
denote the Node ID. The level of darkness of the plot reflects
the number of messages generated in that period of time over
that group of nodes. Please note that there are band-like
patterns in the graphs. One horizontal band represents a group
of eight racks. Observantly, both scatter plots reflect a system
upgrade event, which began in August 2005.

Frequency
10000 15000 20000
| | |

5000
|

cath hals s o1l

[I T 1
1.120e+09 1.125e+09 1.130e+09 1.135e+09

0
[

Unix timestamp

Figure 3 Histogram of message timestamp in the dataset BEST showing
message density by time.

TR WO |
T
AR A
il

(¢ Y R

A0 SR BRI ||

TN B BRI |

BT Y BERUTOLLTIN |

1.120e+09 1.125e+09 1.130e+09 1.135e+409

Node ID

20000 40000 60000 80000
l

o

Unix timestamp

Figure 4 Scatter plot of message occurrence (dataset WORST). Darker area
illustrates more message density.

In addition, message occurrence patterns in both graphs
suggest that most of the generated messages are related among
nodes within the same group of racks. Some messages are
related to all nodes in the system. The scatter plot of the BEST
dataset (Figure 2) suggests that early in new node deployment
many failure-suggesting messages were generated; however,
the scatter plot of the WORST dataset (Figure 4) does not
maintain this characteristic. This is possibly because some
messages in the WORST dataset are not caused by failure
events. Moreover, the histograms of message occurrence
frequency shown in Figure 3 and Figure 5 suggest the highest
message volume occurs when the timestamp ranges from June
13" 2005 17:00:00 to June 14™, 2005 20:46:40 (1118700000
to 1118800000 in UNIX timestamp).In fact, the highest bar in
the Figure 5 is higher than 120,000 counts, but we limit the y-
axis up to 20,000 to keep both graphs at the same scale. This
set of messages is represented in the circles in both scatter
plots (Figure 2 and Figure 4). The scatter plots also suggest
that around that time, most of the messages are coming from a
group located near node ID 30000.

ESTIMATING TIME TO INTERRUPT

In addition to analyzing Blue Gene/L failure behavior,
another objective of this paper is to study application
interruption information from the log files. The time to
interrupt (TTI) is defined by the duration between the time
that the application is being restored (from previous
interruption) and the time that it encounters another
interruption.

To estimate the time to interrupt (TTI), we processed the
time between message data of the BEST and WORST datasets
by making two assumptions: first, the system has a certain
amount of time to repair (TTR), and second, a given
application utilizes all nodes within the system. If the time
between two consecutive messages is less than a given TTR,
the latter failure can no longer affect the application because
the system is being repaired and is no longer in production

Frequency
10000 15000 20000
| | |

5000

Li,

1.120e+09 1.125e+09 1.130e+09 1.135e+09

0
L

Unix timestamp

Figure 5 Histogram of message timestamp (dataset WORST) showing
message density by time.

mode[10]. Given a time to repair, we then derive the TTI for
an application via the following algorithm:

INPUT: Message timestamps (¢;, , ...,t,)
Time to repair (TTR)
OUTPUT: Time to interrupts (771;, TTI,, ...,TTI;)

0:k=0
1: For i=1 to n-1 do

2: if (t;+- ;) >TTR then
3: k=k+1

4. TTI, = ti.— (t; + TTR)
5: else

6:

This failure will not affect an application,
because there will be another failure
before this failure has been fixed.

20

dataset BEST

15

e 7 dataset WORST

Mean time to interrupt (Hr)
10

Time to repair (Hr)

Figure 6 Mean time to interrupt of dataset BEST and dataset WORST by
varying time to repair.

=
o
ok
él — dataset BEST
g n = (ataset WORST
£ —
8
5 9 |
c —
2
5 v |
o O
S A
(o)}
C
§ g MW%‘WW
O =
T T T T

T
0 2 4 6 8

Time to repair (Hr)

Figure 7 Change of mean time to interrupt of dataset BEST and WORST,
varying by time to repair

As we may not be able to predetermine the exact time to
repair (TTR), we then do the experiments by varying the TTR
and see how it affect to the TTI. We vary the TTR from 5
minutes to 8§ hours—with a 5-minute step size. After obtaining
multiple sets of TTI corresponding to each TTR, we study
their sensitivity to TTR by investigating the changes on mean
time to interrupt (MTTI) in each set. The resulting MTTI in
both WORST and BEST datasets after applying various TTRs
are depicted in Figure 6, and the changes of MTTI are
illustrated in Figure 7. The change rate of MTTI of the BEST
dataset contains more fluctuation than that of the WORST
dataset because the messages in the WORST dataset are more
distributed and have many more entries than those in the
BEST dataset (recall Figure 2 and Figure 4). Thus, given small
TTR values many messages in the WORST dataset are
discarded, while fewer messages in the BEST dataset are
disposed. Both graphs suggest that there is no dramatic
change in MTTI for TTRs greater than 20 minutes.

Logically, the changes in TTR would affect the TTI, as the
time that the application being restored will be changed.
However, we might not be able to determine which direction
the TTR will affect the TTI. For example, decreasing TTR
might result in increasing TTI by allowing the application to
be restored earlier, or it might result in decreasing TTI as
more failures can be accounted for the interruption (less
failures being discarded in the TTI estimation algorithm). The
affection of the TTR to the TTI depends entirely on the data.

However, for the dataset we have, 20 minutes time to repair
would be sufficient to estimate TTI in both datasets. Then, in
the future work, we can use this estimated TTI as information
in checkpoint/restart model we developed [11] (by treating
TTI as a random variable and estimate its probability function
and plug it into the model).

CONCLUSION AND FUTURE WORKS

In conclusion, Blue Gene/L log analysis (June 3™, 2005 to
January 4", 2006) has been conducted and the results from

this analysis have been outlined in this paper. These results
suggest that the FATAL severity level contains many non-
severe event messages. In fact, there are numerous
undetermined messages in this severity level. This indicates
that system logs need to be more informative, structural and
standardized so that severe events can be easily obtained.
Messages in the log are also repeatedly generated at such a
high rate that using 1 second to transitively eliminate
duplicate messages (temporal filtering) is sufficient.
Moreover, messages generated by physically nearby nodes
seem to be relevantly interactive. Spatial filtering technique
was not applied as we are concerned with preserving the local
events of each node for future study in node dependencies.
Both optimistic and pessimistic perspectives have been
applied to study and estimate the extreme failure behaviors.
Best and worst case behavior do not converge, implying that
there are many undetermined messages causing differences
between the two datasets. Even though, their patterns of the
mean TTI corresponding to the TTR are similar. Application
time to interrupt has been estimated using various time to
repair. The results from our data suggest that using 20 minutes
TTR is sufficient. In future works, the obtained TTI will be
further investigated in optimal checkpoint model [11] and
intelligent job scheduling algorithm development [12]. In
addition, we are forming the Resilience Consortium to
standardize RAS information and collection methods. Details
of the consortium can be found at http://resileience.latech.edu

REFERENCES

[1] Oliner, J. Stearley. “What Supercomputers Say: A Study of Five System
Logs”. In Proceedings of the International Conference on Dependable
Systems and Networks (DSN), 25-28 June 2007, pp:575 — 584.

[2] Y. Liang, Y. Zhang, H. Xiong, R. Sahoo. “An Adaptive Semantic Filter
for Blue Gene/L Failure Log Analysis”. Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE International, 26-30
March 2007, pp: 1-8

[3] Y. Liang, Y. Zhang, A. Sivasubramaniam, R. Sahoo, J. Moreira, M.
Gupta, “Filtering failure logs for a Bluegene/L prototype”, Dependable
Systems and Networks, 2005. DSN 2005. Proceedings. International
Conference on 28 June-1 July 2005 pp. 476 — 485.

[4] P. Gujrati, Y. Li, Z. Lan, R. Thakur, and J. White, “A Meta-Learning
Failure Predictor for Blue Gene/L Systems”, International Conference
on Parallel Processing, 2007 (ICPP 2007), pp: 40-47.

[5] G.Almasi, R. Bellofatto, J. Brunheroto, C. Cascaval, J. G. Castonos, L.
Ceze, P. Crumlev, C. C. Erway, J. Gagliano, D. Lieber, X. Martorell, J.
E. Moreira, A. Sanomiva and K. Strauss, “An Overview of the Blue
Gene/L System Software Organization”, Euro-Par 2003, Parallel
Processing (2003), pp.543-555

[6] Secure Computing Facility, High Performance Computing at Lawrence
Livermore National Laboratory, https://computing.lInl.gov/?
set=resources&page=SCF_resources#bluegenel

[7] Schroeder and G. Gibson, “A large-scale study of failures in high-
performance-computing systems,” in Proceedings of the 2006
International Conference on Dependable Systems and Networks, June
2006.

[8] R. Sahoo, A. Sivasubramaniam, M. Squillante, and Y. Zhang, “Failure
Data Analysis of a Large-Scale Heterogeneous Server Environment.”, In
Proceedings of the 2004 International Conference on Dependable
Systems and Networks, pages 389-398, 2004.

[9]1 Top 500 super computing sites; http://www.top500.org

[10] J. Stearley. Defining and measuring supercomputer Reliability,
Availability, and Serviceability (RAS). In Proceedings of the Linux

Clusters Institute Conference, 2005. See

TABLE 5 NON-FAILURE SUGGESTING MESSAGE PATTERNS

http://www.cs.sandia.gov/ jrstear/ras. #of
[11] Y. Liu, R. Nassar, C. B. Leangsuksun, N. Naksinchaboon, M. Paun, and Patterns messages
S. L. Scott, “An optimal checkpoint/restart model for a large scale high instruction address: 22964
performance computing system,” in International Parallel and - —
Distributed Processing Symposium, April 2008 machine check interrupt\n 150
[12] N. R. Gottumukkala and C. Leangsuksun and R. Nassar and S. L. Scott, summary\.H\d+ 433
“Reliability-Aware Resource Allocation in HPC Systems,” in imprecise machine check\.+\d+ 247
Proceeding of the {IEEE} International Conference on Cluster wait state enable\.+-\d+ 6476
Computing, 2007 el B Nd+
[13] J. Stearley and A. J. Oliner, “Bad Words: Finding Faults in Spirit's Crlttlcal 11 r}put tlr.ltetrmp L tenab:)el\.\ _\S dr 222(8)
Syslogs,” In Workshop on Resiliency in High-Performance Computing, external nput Mterrupt enaple..
2008 problem state \(O=sup, 1=usr\)\.+\d+ 6479
[14] http://www.latech.edu/~nta008/patterns.tgz floating point instr\. enabled\.\d+ 6455
machine check enable\.+\d+ 6482
floating pt ex mode \d+ enable\.+\d+ 12910
debug wait enable\.+\d+ 6441
debug interrupt enable\.+\d+ 6438
PATTERNS OBTAINED FROM FATAL AND FAILURE SEVERITY | instruction address space\. f\d+ 6428
MESSAGES OF THE BLUE GENE/L LOG FILE data address space\. \d+ 6425
disable apu instruction broadcast\.+\d+ 2336
disable trace broadcast\.+\d+ 2334
TABLE 4 FAILURE SUGGESTING MESSAGE PATTERNS guaranteed instruction cache block touch\.+\d+ 2332
guaranteed data cache block touch\.+\d+ 2331
Patterns # of icacheprefetch depth\.+\d+ 2331
- R . g;isages icacheprefetch threshold\.+\d+ 2330
s panic! - stopping execution data address: 6301
rts internal error 2175 start initialization\. \d+ 26
rIt)s(.) V%Z;n;;;jg\lfl;?eﬁ?d ;2629 start retagging\.+\d+ 26
: start flushing\.+\d+ 26
Etstes oot FAILED 3048 ety 0 e
— - disable speculative access\.+\d+ 26
I?Hll(p;gglgDOVer Lllmlgog lmll(':l:lird 3 ;éz size of scratchpad portion of L3\.+\d+ 26
Pm oot ,em’lr datc t‘? ‘t’“d 1nx car Ve write buffer commit threshold\.-\d-+ 26
ower 1yood signa’ deactivated: size of DDR we are caching\.+\d+ 26
I\S%NI};OR EAILURE While reading FanModule 39 prefetch depth for core \d\.-\d+ 52
.*: Broken pipe
- - prefetch depth for PLB slave\.+\d+ 26
k.
]I;AOIT:I ITO_R FAILURE While setting fan speed .*: 31 max number of outstanding prefetches\.+\d+ 26
I\/Irgl\?InTIZ)lr];eF AILURE m T * Brok turn on hidden refreshes\.+\d+ 26
e and is Stopoin MOIIOT caught == BIoken 1 73 machine check: i-fetch\.-+\d+ 6156
IIj‘XT AL kemelr;)r;ni% 13 floating point operation\.+\d+ 6155
ion\.+\d+
power module status fault detected on node card 4 stor.e op cration\. +\d 6158
- auxiliary processor\.+\d+ 6155
Local PGOOD error latched on link card 4 FATAL'n 226
no ethernet link 5
+ =\d+
MidplaneSwitchController::.* pap failed: 7 Eﬁ;ﬁi ig :ﬁs{iﬁiﬁmax \d#+n fg;
itr)r:)crigserver exited abnormally due to signal: | FATAL , max=\d+ 3
monitor caught .*: power module .* not present and FATAL ax=\d+ 13
is stopping 2 FATAL x=\d+ 2
MidplaneSwitchController::.* iap failed: 2 CHECK INITIAL_GLOBAL INTERRUPT VALUES 536
ciodb exited abnormally due to signal: Aborted 1 mnterrupt threshold 25
s assertion failed: 5 state machine\.+\d+ 25
. symbol\.+\d+ 25
L3 major internal error 2 Ot 25
No power module .* found found on link card 1 mgs :
chip select\.+\d+ 25
pro\n 1
program\n 1

TABLE 6 NON-FAILURE SUGGESTING MESSAGE PATTERNS (CONTINUED)

Patterns # of
messages

ddrSize == 256*¥1024*1024 \\| ddrSize ==
512*¥1024*1024 1
quiet NaN 42
minus inf\.+\d+ 42
minus normalized number\.+\d+ 43
minus denormalized number\.-\d+ 42
minus zero\.+\d+ 42
plus zero\.+\d+ 42
plus denormalized number\.+\d+ 42
plus normalized number\.+\d+ 43
plus infinity\.+\d+ 42
reserved\.+\d+ 42
enable .* exceptions\.+\d+ 210
enable non-IEEE mode\.+\d+ 42
round . ¥\.+\d+ 168

