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Abstract—Checkpoint and restart mechanisms have been
widely used in large scientific simulation applications to make
forward progress in case of failures. However, none of the prior
works have considered the interaction of power-constraint with
temperature, reliability, performance, and checkpointing interval.
It is not clear how power-capping may affect optimal checkpoint-
ing interval. What are the involved reliability, performance, and
energy trade-offs? In this paper, we develop a deep understanding
about the interaction between power-capping and scientific ap-
plications using checkpoint/restart as resilience mechanism, and
propose a new model for the optimal checkpointing interval (OCI)
under power-capping. Our study reveals several interesting, and
previously unknown, insights about how power-capping affects
the reliability, energy consumption, performance.

I. INTRODUCTION

The continuous growth in computing capability has expe-
dited the scientific discovery and enabled scientific applica-
tions to simulate physical phenomena for increased problem
sizes [1], [2]. However, as the computing scale becomes larger,
the likelihood of failures also increases. Failures prevent sci-
entific applications from making forward progress. To address
this problem, scientists typically employ checkpoint-restart
mechanisms to guarantee forward progress of the simulation
in case of failures [3]–[5]. Checkpointing is a periodic pro-
cess that writes the “required-to-recover” application state to
the permanent storage system. When a failure occurs, the
application can restart from the latest checkpoint. Although
checkpoint and restart mechanisms can keep scientific simu-
lations moving forward, writing and reading application state
incurs huge I/O overhead, which also impedes the scientific
productivity [6], [7]. At exascale, this overhead is anticipated
to increase further. In fact, it is estimated that in some cases
applications may end up spending more than 50% of total
execution time on checkpoint, restart, and lost work [8], [9].

The checkpointing process has its own trade-off in terms
of performance and I/O overhead. A small checkpointing
interval leads to high checkpointing I/O overheads while a
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large interval checkpointing may result in high wasted work
if a failure occurs. It is important to checkpoint at the optimal
checkpointing interval (OCI) – a problem well-studied for the
last several decades. Young [10] proposed a first order approx-
imation to the optimal checkpointing interval. Daly [11], [12]
derived a high order estimation of the optimal checkpointing
interval. There have been several other studies proposing finer
refinements to these models, but none of the prior works
have considered the interaction of power-constraint with check-
pointing interval. Power consumption is becoming a first-order
concern for high performance computing (HPC) facilities.
Therefore, efficient operation of these facilities requires power-
constraint to be taken into account at all layers. Power capping
essentially limits the maximum allowable power consumption
of a platform, potentially impacting temperature, reliability,
performance and energy-efficiency. However, it is not clear
how does power capping affect OCI. What are the involved
temperature, reliability, performance, and energy trade-offs?

To the best of our knowledge, no prior study has investi-
gated how power capping affects the checkpointing decisions
for scientific applications in a large-scale HPC computing
facility. Therefore, the goal of this paper is to develop an
understanding about the interaction between power capping
and scientific applications relying on checkpoint/restart. Our
study is based on real-system experiments, analytical models,
and statistical techniques. This work is driven by data obtained
from the real large-scale computing facility. In particular, this
work makes the following contributions.

Contributions: First, we study the effect of power capping
on compute and checkpointing phase for a variety of scientific
applications using a widely-used checkpoint library (Berkeley
Lab Checkpoint/Restart) [3]. We also demonstrate and quantify
how power capping affects the system reliability due to change
in temperature. Second, we propose a new model for optimal
checkpointing interval (OCI) under power capping effects.
Our model derives OCI for both execution time and energy
consumption. Third, we validate our model, and present model
and simulation driven results for a wide range of scenarios. We
show that the proposed model is significantly more accurate
than previously proposed power capping unaware models.
Compared to the previously proposed models, our model
results in significant time and energy savings for both peta-
and exa-scale systems, with different checkpointing costs, wide
range of power caps, and for different application and system
characteristics. Our evaluation also shows that the proposed
model can save up to 18% of energy and execution time for
a set of leadership applications run at the Oak Ridge National
Laboratory. It also reduces the amount of data movement by
up to 57% for these large-scale applications.
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Our study also reveals several interesting, and previously
unknown, insights about how power capping affects temper-
ature, reliability, energy consumption, and performance of
large-scale leadership applications1 in the presence of system
failures and checkpoint/restart. We believe that insights derived
from this work carry significant implications for data center
facilities, researchers focusing on resilience, and end users.

II. RELATED WORK

This paper investigates how the power capping affects
the application performance, system reliability, and the op-
timal checkpointing decisions. There are many ways to
achieve power capping effects. Power capping is generally
achieved through either Dynamic Voltage and Frequency
Scaling (DVFS) [13], or throttling by idle cycle insertion
[14]. The power capping method we used is the Intel Power
Governor, which utilizes the throttling technique [15] [16].
There have been studies to utilize power capping for enterprise
workloads. Power gating is a possible way to reduce the
power consumption through shutting down certain cores. For
example, Ma et al. [17] proposed to shut down idle cores
and boost performance of the other cores through frequency
scaling. Recent works have also explored applying DVFS for
I/O intensive task such as garbage collection [18].

Recognizing the importance of checkpointing, researchers
have long-investigated methods to reduce the checkpointing
overheads. Some studies have focused on reducing check-
point data size itself, for example via designing incremental
checkpointing schemes [19]. Some researchers have proposed
diskless checkpointing through redundancy, such as replica-
tion [20]. Compared with the disk-based checkpointing tech-
niques, diskless checkpointing consumes excessive computing
resources, including processor, memory, network, etc. Finally,
one of the most widely used ways to reduce checkpointing
overhead has been to derive optimal checkpointing interval.
Young [10] proposed a first order approximation to the op-
timum checkpointing interval based on the assumption that
system failures follow a Poisson process. Based on the first
order model, Daly [11], [12] proposed a high order estimation
of the optimum checkpointing interval. The high order model
can predict the OCI more accurately when mean time between
failures (MTBF) becomes smaller. Recently, some works have
taken failure characteristics into account to tune optimal check-
pointing interval [8], and make checkpointing more energy-
efficient [21]. However, none of these works investigate the
impact of power capping on checkpointing for large-scale HPC
applications.

III. BACKGROUND AND METHODOLOGY

Our work is primarily modeled after and based on Titan,
No. 2 on the Top 500 supercomputer list. Titan consists of
18,688 compute nodes (CPU and GPU) and more than 700
TB memory capacity. Titan’s theoretical peak performance is
approx. 27 Petaflops. We have also included various system
design points to show the relevance and impact of our insights,
and proposed model for the future exascale systems.

1Leadership-scale computing refers to supercomputers facilitated by the
Department of Energy, and we refer to the large-scale application run on
these supercomputers as leadership applications.

System failure related data to validate our model and
drive our simulation studies has been collected from the Oak
Ridge Leadership Computing Facility. This data represents
Titan’s failure log data for over two years since production.
We evaluate the impact of our proposed model on different
leadership applications. In Table I, we show the checkpoint
size and run time for such applications based on traditional
hourly checkpoints.

TABLE I: Characteristics of leadership applications [8].

Application Scientific Checkpoint Application

Name Domain Data Size Run-time

CHIMERA Astrophysics 160 TB 360 Hours

GTC Fusion 20 TB 120 Hours

GYRO Fusion 50 GB 120 Hours

POP Climate 26 GB 480 Hours

S3D Combustion 5 TB 240 Hours

VULCUN/2D Astrophysics 0.83 GB 720 Hours

In order to study the impact of power capping on the
optimal checkpointing interval, we combine experiments, sim-
ulations, and model analyses in this paper. First, we obtain
performance and temperature data under power capping on
small-scale machines. Second, we develop our OCI model
based on the regression analysis. Then, we validate our OCI
model through simulations, and evaluate the model. Finally,
we show a case study for our model at large scale based on
leadership application runs.

We point out that performing power capping experiments
is not possible on the Titan supercomputer’s AMD CPUs
because power-capping is not supported on these platforms.
To overcome this limitation, we choose two Xeon platforms
to drive our study and gain insights. The two Xeon platforms
are E5-2670 and E5-2630. E5-2670 platform has 8 cores
each clocked at 2.6 GHz with 115 watts Thermal Design
Power (TDP) and 166.4 flops of double floating point peak
performance. On the other hand, E5-2630 platform has only
6 cores each clocked at 2.3 GHz with 95 watts TDP and
110.4 flops of double floating point peak performance. Both
platforms have 64 GB of DRAM and running Linux 2.6.32
kernel with GCC 4.4.6 compiler installed. Also, since these
platforms cannot run large-scale applications that depend on
Cray linux environment and platform specific libraries, we
run a wide variety of scientific applications for understanding
power capping effects, taken from Rodinia benchmark suite
and NPB benchmark suite (Table II). These benchmarks cover
a variety of science domains and were characterized using TAU
profiling tool [22] and PAPI counters [23] to ensure that they
represent a wide range of architectural characteristics.

We use BLCR [3], a widely used system-level checkpoint-
ing library, to perform system level checkpointing on scientific
applications. Performance is measured as the reciprocal of
execution time. Each processor runs at its full capacity and
utilizes all available cores. Librapl [24] and Intel Power
Governor [15] are utilized to profile CPU power consumption
and cap the package power consumption respectively. Linux-
monitoring sensors (lm sensors) are used to measure CPU
temperature. We recognize that our work and findings are
bounded by the assumptions and scope, therefore, we also
point out the threats to validity when discussing our results.
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TABLE II: Benchmark domain and problem size

Rodinia
Problem

NPB
Problem

size size

LUD (LU Decomposition) 4M pseudo applications

LavaMD 4K LU, SP & BT B

CFD (CFD Solver) 97K kernels

FT, MG, IS, EP & CG B

IV. POWER CAPPING EFFECTS ON PERFORMANCE

The first step toward obtaining the optimal checkpointing
interval under power-capping is to understand how power-
capping affects: (a) the execution time of simulation (compu-
tation time), (b) the execution time of checkpointing, and (c)
system reliability. In this section, we focus on first two goals,
i.e., how power capping affects the performance/execution time
of application computation phase and checkpointing phase.

First, we present results that help us understand how dif-
ferent power capping affects the execution time of application
computation phase. Fig. 1 shows the normalized execution
time for a set of scientific benchmarks from linear algebra,
computational fluid dynamics, and molecular dynamics do-
mains (Table II), on two different platforms (Section III). We
observe that the execution time increases non-linearly across
all the benchmarks on both platforms. This indicates that power
capping affects the computation time significantly, although the
degree of effect may vary across benchmarks and platforms.
We point out that the average power consumption for the
benchmarks on Xeon E5-2670 platform ranges from 63 watts
to 78 watts, and the minimum package power consumption that
Intel power governor can enforce is approximately 23 watts on
this platform. This implies that the range for reasonable power
caps should between 23 watts and 63 watts to observe the effect
on performance. Therefore, we choose power capping levels of
60, 50, 40, and 30 watts for Xeon E5-2670 platform. Similarly
for Xeon E5-2630 platform, we choose power caps 50, 45, 40,
35, 30, and 25 watts taking average power consumption of the
benchmarks into consideration.

To take this effect into consideration toward obtaining
optimal checkpointing interval, we attempt to capture this trend
mathematically. We find that normalized execution time under
power capping for a given benchmark can be fitted using an
exponential function. The R-squared values of regression func-
tions are above 0.97 for all the benchmarks on both platforms
indicating statistically sound fit. Since the benchmarks are
affected differently by power capping in terms of execution
time, the parameters or regression coefficients are different for
each application. The exponential regression functions can be
generalized as Equation 1.

Tcomp(Pi)/Tcomp = A× eB×Pi + 1 (1)

Tcomp represents computation time without power capping,

and Tcomp(Pi) denotes the computation time under power cap
Pi. e is Euler’s number.

The upper bound and lower bound regression functions for
both platforms are shown in Fig. 1. From these results we
note that applications and platforms both have impact on the
coefficients in fitted exponential functions. We study the impact
of these co-efficients in later sections; in particular how these

co-efficients affect the optimal checkpointing interval and total
execution time under different power capping scenario.
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(a) Xeon E5-2670
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(b) Xeon E5-2630

Fig. 1: Effect of power capping on compute phase of bench-
marks on different platforms.
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(b) Checkpointing Time

Fig. 2: Effect of power capping on checkpointing phase of
benchmarks: BLCR checkpointing library is used and Check-
pointing time is normalized by the checkpointing time without
any power capping.

Next, we present results that help us understand how differ-
ent power capping affects the execution time of checkpointing
phase. Checkpointing is an I/O intensive operation in contrast
to computation intensive scientific simulation applications.
Therefore, one can reasonably expect to observe different
power capping effects on checkpointing phase than on compute
phase. We use BLCR to perform checkpointing on three
benchmarks (LU, SP, and BT). We find similar results for other
benchmarks and platforms, but due to space limitation we only
present representative results that capture trends for all the
benchmarks. Fig. 2 shows the computing and checkpointing
power consumption and execution time on Xeon E5-2630
platform under different power caps. Notice the two dips
in the Fig. 2 (a) which is corresponding to two checkpoint
phases. Checkpointing power consumption under all power
caps are similar (approximately 21.4 watts). The effect of
power capping on checkpointing time can be captured by the
Eq. 2.

β(Pi) = β (2)

β represents time needed to take a checkpoint without power
capping, and β(Pi) denotes time needed to take a checkpoint
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under power cap Pi. As expected, the effect of power cap-
ping on duration of checkpointing phase is minimal because
checkpointing is an I/O intensive operation and throttling CPU
performance to save instantaneous power does not affect I/O
performance significantly, similar to observed by previous
studies too.

Finding 1: Power capping affects the execution time of
compute phase significantly across all benchmarks on different
platform. Further, We show that this effect can be captured by
an exponential function fitting.

V. POWER CAPPING EFFECTS ON MTBF

As discussed earlier, the next step toward obtaining the op-
timal checkpointing interval under power-capping is to under-
stand how power-capping affects system reliability. However,
deriving this relationship is more challenging. We show that
this process consists of two steps. First, we show that power-
capping directly affects the temperature of the system. Second,
we show how temperature affects the system reliability.

A. Power Capping Effects on Temperature

In this section, we show that different power-capping levels
result in different steady-state temperature. First, we perform
power capping and temperature measurement on the Xeon E5-
2630 platform and E5-2670 platform. We run each benchmark
for 1800 seconds under ten different power caps. Steady
power consumption and temperature are calculated using the
average of last 30 seconds. Fig. 3 shows the representative
trend for two benchmarks on the Xeon E5-2630 platform.
Both benchmarks show almost same behavior in terms of
temperature profile under different power caps. We obtained
similar results for other benchmarks and platforms, indicating
that power-capping has a direct impact on the temperature and
is largely independent of benchmark characteristics, unlike the
effect of power-capping on execution time of compute phase.

(a) LU Temperature (b) SP Temperature

Fig. 3: Effect of power capping on the processor temperature
(Xeon E5-2630 platform).

To take this effect into consideration toward obtaining
optimal checkpointing interval, we attempt to capture this
trend mathematically. We find that temperature under power
capping can be fitted using a linear function. The R-squared
values of regression functions are above 0.99 for different
platforms indicating a statistically sound fit. We find the
regression coefficients to be different across platforms, but
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(b) Core i7-2600

Fig. 4: Temperature variation with power capping level, and
fitted regression functions on Xeon E5-2630 platform (a), and
Core i7-2600 platform (b).

same for different benchmarks on the same platform. Fig. 4 (a)
shows this for Xeon E5-2630 platform, we find similar results
for other benchmark and platform combinations (e.g., Xeon
E52670 and E52603). The linear regression functions can be
expressed more generically as Eq. 3.

TEMP (Pi) = C × Pi+D (3)

TEMP (Pi) denotes temperature under power cap Pi.

We recognize that the relationship between power cap and
processor temperature can also depend on the cooling infras-
tructure. Heat is dissipated in the form of both heat exchange
and radiation, which grows faster as processor temperature
increases. When processor heat generation equals to heat
dissipation, processor temperature becomes steady. A powerful
cooling infrastructure can maintain a low steady processor
temperature such as in servers. Therefore, in addition to Xeon
server platforms, we also a chose a desktop-like processor
(Core i7-2600) to be able to compare and contrast our findings
with two different types of cooling infrastructures (Fig. 4(a)
and (b)). We note that repeating the exactly same experiments
for core i7-2600 is not feasible because power capping is not
supported on desktop processors. Therefore, different clock
rates are utilized to generate distinct power consumption and
temperature pairs. Steady power consumption and temperature
data of Core i7-2600 are shown in Fig. 4(b). These data points
can still be fitted with linear functions as shown in the figure.
The R-squared values of regression functions are higher than
0.99 for all the applications. As PC cooling infrastructure
has less capacity as compared to server cooling infrastructure,
Core i7-2600 temperature increases much faster than Xeon E5-
2630 when power consumption is increased. This result also
illustrates that the regression co-efficients are dependent on the
platform and cooling infrastructure.

Finding 2: Power capping level directly impacts the
temperature of the processor. This relationship can be captured
by a linear function, and is largely independent of the ap-
plication characteristics for the different platform and bench-
marks pairs we tested. However, the regression co-efficients
are platform-specific, potentially indicating dependent on the
cooling infrastructure itself.
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Fig. 5: Temperature and MTBF data of top, middle, and
bottom cages on Titan. MTBF is calculated according to the
total number of failures across cabinets, while temperature is
calculated based on each individual cabinet.

B. Temperature Effects on MTBF

As discussed in the previous section, we relate power
capping and system reliability by understanding how power
capping affects temperature and then how temperature im-
pacts the MTBF of the system. Previous works have shown
the evidence that temperature can affect the overall system
reliability [25]–[29].

In this section, we establish how temperature affects the
MTBF of the system. For this purpose, we take advantage
of Arrhenius Equation [30], which has been shown to fit
computing systems [31] defining mean time between failure
(MTBF) dependence on temperature.

MTBF (Pi) = MTBFbase/FA(TEMP (Pi)) (4)

FA(x) is the acceleration factor under a given temperature x,
as defined in Equation 5.

FA(x) = e
Ea
k

×(1/TEMPbase−1/x) (5)

k is Boltzmann constant which equals to 8.617×10−5 eV/°K.
Ea represents activation energy. Using the Titan supercom-
puter’s data, we demonstrate that this relationship holds true
in a large-scale HPC computing facility. Fig. 5 shows the
temperature and MTBF data for different levels on cages in
the cabinet for the Titan supercomputer. Each server cabinet in
Titan consists of three cages, top, middle, and bottom. Cold air
flows from bottom cage to top cage, which creates a gradient
in ambient temperature. The temperature increases as we go
from bottom cage to the top cage and hence, lower cages tend
to have shorter MTBF. We set MTBFbase and TEMPbase

as MTBF and average temperature of bottom cage. Then, we
calculate temperature for middle and top cages based on MTBF
of corresponding cage level using Equation 4. As shown in Fig.
5, temperature data for middle and top cages closely match
the field data for the empirical value of activation energy,
Ea = 0.7eV . We also plot the variance in the temperature data
to show that it falls within the range and has similar trend.

This mathematical relationship can be used to model the
system’s reliability behavior and its impact on the optimal
checkpointing interval. However, it is important to note the
potential limitation and scope of this approach. We recognize
that power-capping alone may not be responsible for tempera-
ture of different computing components. The inefficiencies in

power/cooling infrastructure may cause temperature variability,
in addition to what may be caused by the power-capping alone.
Our approach doesn’t directly and explicitly model such vari-
ance caused by the power/cooling infrastructure itself. Focus
of this paper is to understand the impact of power-capping on
checkpointing decisions, although other environmental condi-
tions may also contribute toward such decision. We also note
that power/cooling infrastructure can not completely mitigate
the temperature’s impact on system MTBF without dynami-
cally changing the cooling infrastructure load. However, cur-
rent HPC facilities often do not react dynamically to load-
changes in order to adjust cooling resources. They are typically
designed for a fixed load and therefore, power capping effect
on the temperature will exist in such systems. Therefore, it
is important to explicitly model and understand the power-
capping’s effect on checkpointing decisions, performance and
energy consumption. Finally, we also note that we do not
model the effect of variance in temperature on failures [29]
since the presence of such effects in the Titan supercomputer’s
failure and temperature logs was not statistically significant.

Finding 3: The system MTBF decreases with increase
in temperature. The effect of temperature on the system MTBF
can be modeled by Arrhenius Equation. We also show that the
field data obtained on Titan validates this relationship.

VI. POWER CAPPING EFFECTS ON THE OCI

TABLE III: Symbols and Definitions

Symbols Definitions

Pi power cap

α checkpointing interval

β, β(Pi) time to take a checkpoint

γ time to restart from a failure

ǫ fraction of lost work

TEMPbase baseline temperature

MTTFbase baseline MTTF under TEMPbase

TEMP (Pi) temperature under power cap Pi

FA(x) acceleration factor under temperature x

Ttotal, Ttotal(Pi) total execution time

Tcomp, Tcomp(Pi) total computation time

Tchkp, Tchkp(Pi) total time in taking checkpoints

Twaste, Twaste(Pi) total wasted time

Pcomp computing power consumption

Pchkp checkpointing power consumption

Etotal, Etotal(Pi) total energy consumption

Ecomp, Ecomp(Pi) total computation energy

Echkp, Echkp(Pi) total energy in taking checkpoints

Ewaste, Ewaste(Pi) total wasted energy

T comp
waste, T comp

waste(Pi) total wasted computation time

T chkp
waste, T chkp

waste(Pi) total wasted checkpoint time

Trestart, Trestart(Pi) total time in restarting

* Symbols with overlines have the same meanings as the ones
without overlines, except that they are under power cap Pi.

In section VI-A, first, we revisit how the first order model
calculates the OCI [10], as shown in Equations 6 to 11. Then
we introduce our power capping aware OCI model based on
the first order model in section VI-B. In section VI-C, we
revisit the high order model [12] and develop our high order
power-aware OCI model using the same approach in first order
model. Table III lists all the parameters used in the models.
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A. First Order Model

According to the first order model, when considering
checkpoint and restart, the total execution time is composed of
successful computation time, successful checkpoint time and
wasted time caused by failures, as shown in Eq. 6.

Ttotal = Tcomp + Tchkp + Twaste (6)

Compute	 Checkpoint	
Compute	&	

Checkpoint	
Restart	 Compute	 Checkpoint	

α	 β	 ε(α+β)	 γ	

Checkpoint	

Interval	

Failure	
Waste	

Time	

…	 …	

Fig. 6: An example of computation, checkpoint, failure, and
restart. Computation is divided into multiple segments and a
checkpoint is taken at the end of each segment.

An example to illustrate computing, checkpoint, failure,
and restart is given in Fig. 6. Checkpointing interval is denoted
as α. Time to take a single checkpoint is denoted as β. ǫ
represents the fraction of lost computation and checkpoint. γ
is the time to restart from a failure. Total amount of time spent
in checkpointing can be expressed as Eq. 7.

Tchkp = (
Tcomp

α
− 1)× β (7)

Time wasted due to failures consists of lost computation

(T comp
waste), lost checkpoint (T chkp

waste), and time spent in restart
process (Trestart), which can be expressed as Eq. 8.

Twaste = T comp
waste + T chkp

waste + Trestart

T comp
waste =

Tcomp

α
× (e

α+β
MTBF − 1)(ǫ× α)

T chkp
waste =

Tcomp

α
× (e

α+β
MTBF − 1)(ǫ× β)

Trestart =
Tcomp

α
× (e

α+β
MTBF − 1)(γ)

(8)

Based on Eq. 6, total energy consumption of the first order
model is shown in Eq. 9.

Etotal =Pcomp × Tcomp + Pchkp × Tchkp

+ Pcomp × T comp
waste + Pchkp × (T chkp

waste + Trestart)
(9)

Replacing Tchkp and Twaste in Eq. 6 and Eq. 9, we can get
the expressions of total time (Ttotal) and energy consumption
(Etotal) in the first order model.

The OCI optimized for execution time (αt) is achieved
when d

dα (Ttotal) = 0. Similarly, the OCI optimized for energy

consumption (αe) is achieved when d
dα (Etotal) = 0. When

α+β ≪ MTBF , expression e
α+β

MTBF −1 can be approximated

as α+β
MTBF . Solving the differential equations, we can get the

expressions for the OCI optimized for execution time (α−

t ) and
energy consumption (α−

e ) for the first order model, which are
shown in Eq. 10 and Eq. 11 respectively. Note the superscript
“−” signifies that OCI is from a power-unaware model.

α−

t =

√

β2 +
β × γ

ǫ
+

MTBF × β

ǫ
(10)

α−

e =

√

Pchkp

Pcomp
× (β2 +

β × γ

ǫ
+

MTBF × β

ǫ
) (11)

Finding 4: Even without applying power-capping, the
OCI optimized for energy can be smaller than the OCI opti-
mized for performance. The difference between these OCIs gets
larger as the ratio of power consumption during checkpointing
to power consumption during computing becomes smaller.

B. First Order Power-aware Model

Taking the first order model described here as a baseline,
we propose a power-aware OCI model. The goal is to express
Ttotal and Etotal as functions of power cap Pi. Similar to
Equation 6 and 9, we can write the following equations for
execution time and energy consumption under a given power
cap Pi (i.e., Ttotal(Pi), Etotal(Pi)).

Ttotal(Pi) = Tcomp(Pi) + Tchkp(Pi) + Twaste(Pi) (12)

Etotal(Pi) =Pi × Tcomp(Pi) + Pchkp × Tchkp(Pi)

+ Pi × T comp
waste(Pi)

+ Pchkp × (T chkp
waste(Pi) + Trestart(Pi))

(13)

Equations 7 and 8 are also applicable here if we replace Tcomp

by Tcomp(Pi) and MTBF by MTBF (Pi). According to Eq.

1, Tcomp can be expressed as functions of Pi (i.e., Tcomp(Pi)).
Also, based on Eq. 3, Eq. 4 and Eq. 5, MTBF can also be
expressed as a function of Pi (i.e., MTBF (Pi)). Note that β
is dominated by writing checkpoints to storage system, and
γ is dominated by reading checkpoints from storage system.
Since we find in our experiments that time to write checkpoints
does not vary significantly with power capping, as shown in
Eq. 2, it is reasonable to assume that time to read checkpoints
is also independent of power capping. Therefore, we assume
γ to be independent of power capping. After performing these
substitutions we can obtain detailed expressions for Ttotal(Pi)
and Etotal(Pi). We do not show them here due to space limit.

The OCI optimized for execution time (α+
t ) and op-

timized for energy consumption (α+
e ) are achieved when

d
dα (Ttotal(Pi)) = 0 and d

dα (Etotal(Pi)) = 0 respectively. Note
that superscript “+” signifies that the OCI includes the power
capping aware model. When α + β ≪ MTBF , solving the
differential equations, we can get the functional relationship
between power and OCI, as shown in Eq. 14 and 15.

α+
t =

√

β2 +
2× β × γ

ǫ
+

MTTFbase × β

FA(C×Pi+D)× ǫ
(14)

α+
e =

√

Pchkp

Pi
× [β2 +

2× β × γ

ǫ
+

MTTFbase × β

FA(C×Pi+D)× ǫ
]

(15)

We note that Power capping aware OCI has no dependence
on the regression co-efficients A and B, which show how
power capping affects compute phase performance.

Finding 5: Power capping aware OCI is not determined
by how the compute phase performance is affected by power
capping. That is, two applications with varying sensitivity
toward power capping on their compute phase performance,
will have the same OCI if all else is the same.
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C. High Order Models

The high order model refines Twaste in the first order
model in the following three steps. First, high order model
introduces the fraction of lost work over a time interval φ(∆t)
to replace ǫ, which is shown in Eq. 16, similar to [12]. Second,
high order model defines the number of failures as Ttotal

MTBF
to consider multiple failures in a computing segment. Finally,
high order model considers failures during restart processes.

Refined T comp
waste, T chkp

waste, and Trestart are shown in Eq. 17 and
Eq. 18.

φ(∆t) =
MTBF

∆t
+

1

1− e∆t/MTBF
(16)

T comp
waste =

Ttotal

MTBF
× [φ(α+ β)× α× e−

α+β+γ
MTBF

+ φ(α+ β + γ)× α× (1− e−
α+β+γ
MTBF )]

T chkp
waste =

Ttotal

MTBF
× [φ(α+ β)× β × e−

α+β+γ
MTBF

+ φ(α+ β + γ)× β × (1− e−
α+β+γ
MTBF )]

(17)

Trestart =
Ttotal

MTBF
× [γ × e−

α+β+γ
MTBF

+ φ(α+ β + γ)× γ × (1− e−
α+β+γ
MTBF )]

(18)

Replacing Twaste in the first order model, the expression
of Ttotal for the high order model is shown in Eq. 19.

Ttotal =MTBF × (
Tcomp

α
−

β

α+ β
)

× e
γ

MTBF × (e
α+β

MTBF − 1)

(19)

High order model can also be extended to power-aware OCI
model using same approach in Section VI-B. Since the high
order model only refines Twaste, we can derive Ttotal(Pi)
and Etotal(Pi) from Twaste(Pi). Similar to Eq. 17, Eq. 18,

and Eq. 19, T comp
waste(Pi), T

chkp
waste(Pi), and Trestart(Pi) can be

expressed if Ttotal, MTBF , and φ is replaced by Ttotal(Pi),
MTBF (Pi) and φ(∆t). Similar to Section VI-B, MTBF (Pi)
can be obtained using Eq. 3, 4 and 5. Expression for Ttotal(Pi)
is shown in Eq. 20 and Eq. φ(∆t) is defined in Eq. 21.

Ttotal(Pi) =MTBF (Pi)× (
Tcomp(Pi)

α
−

β

α+ β
)

× e
γ

MTBF (Pi) × (e
α+β

MTBF (Pi) − 1)

(20)

φ(∆t) =
MTBF (Pi)

∆t
+

1

1− e∆t/MTBF (Pi)
(21)

Based on Eq. 13, we can also get the expression of Etotal(Pi)
for power capping aware high order model. The OCI op-
timized for execution time (α+

t ) and optimized for energy
consumption (α+

e ) are achieved when d
dα (Ttotal(Pi)) = 0 and

d
dα (Etotal(Pi)) = 0 respectively. The analytical solution of
the OCI can be found in [11] [12]. However, the analytical
solutions are approximation to or estimation of OCIs based on
certain conditions. In order to accurately predict OCIs under all
conditions, we use the numeric solver “vpasolve” in MATLAB
to calculate OCIs for both first order power-aware model and
high order power-aware model.

VII. MODEL VALIDATION AND MODEL-DRIVEN STUDY

In this section, we perform simulations using an event-
driven simulator and validate our model against simulation
results. Then, we conduct model-driven study to compare
our power-aware OCI models with the prior power capping
unaware OCI models (i.e., first order and high order models).

To validate our power capping aware OCI model, we
use a simulation based approach to compare against. We
developed an event-driven simulator to simulate the compute
phase, checkpointing phase, and failure events. The simulator
generates random failures which follow a Poisson process, and
intervals between failures follow an exponential distribution.
The execution time, checkpointing time, and MTBF is adjusted
in the simulation based on the input power capping level in
accordance to relationships derived in previous sections.

Threats to validity: We recognize that our findings are
bounded by the assumptions and parameter settings. To mimic
real-world scenario, our simulation based evaluation is driven
by parameters obtained from real-system experiments, large-
scale application characteristics, empirical parameters obtained
from HPC facility. The simulation based study uses power
capping related coefficients that are experimentally obtained
from the different Intel Xeon platforms for a variety of
scientific applications. Simulation based study is driven by
failure and I/O data obtained from the Titan supercomputer and
the temperature dependence of MTBF has also been simulated
based on the Titan supercomputer data. At the same time, we
also acknowledge that it is not always possible to obtain real-
world data to drive simulation based studies. In such cases, we
have used a range of parameters to simulate the impact of such
factors. We simulated failure events using Weibull distribution
to mimic real-world scenario and obtained similar accuracy
and results, but results are omitted due to space restrictions.

Fig. 7 shows the total execution time and energy consump-
tion under different power-caps for a peta-scale system, similar
to the Tian supercomputer. The figure curves correspond to
our power capping aware models and the simulation. We
also mark the OCIs obtained by previous models and OCIs
obtained by new power capping aware model. The simula-
tion setup assumes a 120 hour long application running on
a Titan-like supercomputer, which is composed of 20,000
nodes. It assumes to have the same MTBF as Titan under
the same temperature. The power capping effect is modeled
after Xeon E5-2630 processor. The regression co-efficients
corresponds to that platform and pseudo applications from the
NAS benchmark suite (LU, SP, BT) on that platform. Note
that these applications have similar regression co-efficients.
We later perform sensitivity analysis w.r.t. such co-efficients
as well. The checkpointing power is taken as 21.4 watts as on
measured on this platform. The baseline power consumption
is 64.1 watts under no power capping. Baseline temperature is
calculated based on Eq. 3, and baseline MTBF is calculated
based on MTBF and temperature data from Titan logs using
Arrhenius Equation with the empirical value of activation
energy. The checkpointing time is taken as to be 3.6% of
the compute time as obtained from our experiments from the
BLCR checkpointing library. We assume that time to restart
equals to time to checkpoint, since the former one primarily
reads checkpoints from storage system and the latter one
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Fig. 7: Execution time and energy consumption under various checkpointing intervals. Legends at the bottom represent execution
time (Ttotal), and legends at the top represent energy consumption. “Sim” is simulation results, “First” represents first order
model, and “High” denotes high order model. OCIs derived from prior models (i.e., α−

t and α−

e ) are marked with a triangle
facing upwards and OCIs calculated from our model (i.e., α+

t and α+
e ) are marked with a triangle facing the downwards.

mainly writes checkpoints to storage system. We simulate more
than 40 checkpointing intervals under each power cap.

We make several observations from the Fig. 7. First, we
find that across various power caps, the power capping aware
model predicted OCI closely matches with the simulation
results corresponding to minimum execution time and energy
consumption. Second, the OCI predicted by previous models,
which do not take power capping effects into account, are
significantly far from optimal OCI points. In most cases, this
results in more than 10% performance loss and additional
energy consumption. We also notice that the difference be-
tween the first and high order model is not significant in
the cases presented here. Finally, we also observe that the
power capping aware model results in significant savings as
the power cap becomes smaller. For example, the performance
difference between power capping aware OCI model and high
order model increases from 8.8% to 17.2% when power cap
drops from 60 watts to 25 watts. This is primarily because the
new model captures the MTBF change due to power capping
better as the power cap drops.

Finding 6: Our model predicted OCI closely matches
the minimal execution time and energy consumption achieved
by the simulation runs. The power capping aware model results
in significant performance and energy savings compared to
previous models. Also, these savings increase significantly as
the power cap gets tighter.

Next, we show that our model is validated for an exascale-
like system as well. Fig. 8 shows that the model closely follows
the simulation and power capping aware model predicts OCI
accurately. Interestingly, the improvements in performance and
energy due to new model is higher compared to the petascale
system. This is because at exascale the MTBF becomes smaller
and hence, previous models take checkpoint more frequently
and incur very high I/O overhead. However, the power capping
aware model adjusts the OCI taking both the system scale and
power capping into account. It estimates the OCI to be a bit
higher and hence, results in significantly less I/O overhead.
As a key summary, Fig. 9(a) shows that applying our power
capping aware OCI model can reduce the total execution time
and energy consumption, compared to prior OCI models at
both peta- and exa-scale. We observe that for a petascale
system execution time can be improved between 8.8% to
17.2% using the high order power capping aware OCI model.
This effect is even more pronounced for exascale system where
execution time can be improved between 49.4% to 52.9%
using the high order power capping aware OCI model. Similar
savings can be observed for energy consumption as well when
applying power capping aware OCI model.

In Fig. 7 and 8, it can be noticed that the execution time and
energy curves shift upward when the power cap is reduced. To
illustrate and understand this trend better, we show Fig. 9(b)
where the execution time curve is plotted for a power cap of
50 watt, 40 watt, and 30 watt. α+

t and α−

t are also marked
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(b) Power Cap 50 watts
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(c) Power Cap 40 watts
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(d) Power Cap 30 watts

Fig. 8: Execution time and energy consumption under various checkpointing intervals for exascale system. Legends have the
same meanings as in Figure 7.
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Fig. 9: Improvement in performance and energy consumption
at petascale and exascale under different power caps (a), and
execution time curves under different power capping levels
with OCIs for power aware model and prior model without
power capping awareness (b).

for each power cap in the figure. Notice that α−

t are on same
vertical line because power cap unaware OCI stays the same.
On the other hand, as the power cap is reduced the curves
shift upward due to increased execution time, and the curve
shifts towards the right due to increasing MTBF. Therefore, α+

t
increases as the power cap decreases due to change in MTBF.
Prior models can not take this effect into account and lead to
suboptimal OCI estimation. This explains why and how the
power capping aware model outperforms the prior models in
different situations.

Finding 7: As the system scale increases, the benefit of
power capping aware OCI model also increases significantly
compared to the prior models.

Next, we show that it is critical to choose the correct
power cap level to achieve minimum execution time and
energy consumption. Fig. 10(a) shows the best performance
is achieved when power cap is 50 watts, and the lowest
energy consumption is achieved when power cap is 45 watts.
This illustrates that the optimal power capping level itself
depends upon the metric of optimization (e.g., performance,
and energy). We also point out that the corresponding OCI on
these power capping levels would be different as well, this can
be obtained via our model. Note that this result includes the
failure events, checkpointing, and restart phase.
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Fig. 10: Total execution time and energy consumption under
various power caps with the optimal checkpointing interval (a),
and when checkpointing overhead is ignored (b).

On the other hand, the results in Fig. 10(b) do not take
failures, checkpoint, and restart into account. Interestingly, in
this case the lowest execution time is achieved with power
cap of 60 watt, and least energy consumption is observed
for power cap of 35 watts when we do not consider failures,
checkpoint, and restart. This is a critical finding that illustrates
that optimal power cap levels can not alone be decided by
how power capping affects the application in isolation, without
taking failures, checkpointing, and restart phase into account.
These shifts in optimal power caps are caused by the impact of
power capping on MTBF. We find that using 45 watt power cap
instead of 35 watt power cap leads to 20.2% savings in energy
consumption. Note that this reduction in energy consumption
is between power-unaware model based OCI at 35 watt and
power-aware model based OCI at 45 watts. Similarly, using 50
watt power cap instead of 60 watt power cap leads to 12.6%
reduction in execution time.

Finding 8: The optimal power cap levels for minimizing
execution time and energy consumption are different and
so are their corresponding OCIs. The optimal power cap
levels for minimizing execution time and energy consumption
change once failures, checkpoint, and restart phases are taken
into account. The corresponding difference in execution time
and energy consumption is significant. Our results also show
that power capping aware OCI model leads to significant
improvements.

9



0 

20 

40 

60 

80 

100 

6
0
w
 

5
5
w
 

5
0
w
 

4
5
w
 

4
0
w
 

3
5
w
 

3
0
w
 

2
5
w
 

%
 R
e
d
u
c
(
o
n
 

(a) Checkpoint time

‐10 

0 

10 

20 

30 

40 

50 

6
0
w
 

5
5
w
 

5
0
w
 

4
5
w
 

4
0
w
 

3
5
w
 

3
0
w
 

2
5
w
 

%
 R
e
d
u
c
(
o
n
 

(b) Wasted time

0 

10 

20 

30 

40 

50 

60 

70 

6
0
w
 

5
5
w
 

5
0
w
 

4
5
w
 

4
0
w
 

3
5
w
 

3
0
w
 

2
5
w
 

%
 R
e
d
u
c
(
o
n
 

Time 

(Core i7) 

Energy 

(Core i7) 

Time 

(Xeon) 

Energy 

(Xeon) 

(c) Total execution time

Fig. 11: Percentage reduction in time and energy spent in checkpointing, wasted work, and the total time/energy under various
power caps and for different cooling platform parameters.
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Fig. 12: Sensitivity study on application-specific coefficients (parameter A and B). Reduction in time spent in checkpointing,
wasted work, and total execution under different power caps.
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Fig. 13: Sensitivity study on time to checkpoint (β). Reduction in time spent in checkpointing, wasted work, and total execution
under different power caps.

Next, we study how improvement obtained by the power
capping aware OCI model changes when the application spe-
cific parameters (A and B), and platform specific parameters
(C and D) change. We also study the impact of time to
checkpoint (β) on the improvements. It is followed by eval-
uation for real scientific applications. We compare our power
capping aware OCI model with prior OCI models, in terms of
execution time, energy consumption, and overall checkpointing
data volume.

Percentage reduction in execution time and energy con-
sumption for checkpointing, wasted, and total between prior
OCI models and our OCI model under various power caps are
shown in Fig. 11. First, we focus on results for Xeon platform
(C = 0.26, D = 38.6). Comparing with prior models, our
model can achieve 9% to 17% reduction in total execution
time, and 42% to 57% reduction in checkpointing time. There
is a minor increase in waste work but it is offset by significant

savings in checkpointing time. Percentage changes for total and
checkpointing time increase as power cap decreases. Energy
consumption also follows similar trend. The reason is that the
difference between OCIs derived from prior OCI models and
our power capping aware OCI model is increasing as power
cap decreases, as shown in Fig. 9. We chose Core i7 platform
because it has higher sensitivity to temperature with respect to
power consumption (higher value of C parameter, C = 0.75,
D = 29.1). We find that platforms with higher temperature
gradient w.r.t. power capping benefit significantly more by
applying power capping aware OCI model (Fig. 11), and their
corresponding OCI is also significantly different that can be
obtained from our model. Overall, the power capping aware
OCI also results in reduction in the checkpoint time.

We point out that reducing the number of checkpoints can
relieve the burden on the storage system of an HPC system
which is a shared and constraint resource. Therefore, power
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Fig. 14: Percentage reduction in time spent in checkpointing, wasted work, and total execution under different power caps for
several leadership applications.

capping aware OCI may in return improve the overall I/O
performance of the whole system and other applications.

Next, we study the sensitivity toward application specific
parameters (A and B) that represent the impact of power
capping on application performance (Section IV). We per-
form experiments with the applications that have regression
functions in Fig. 1(b) at both extremes (i.e., MG and EP).
Reduction in time spent on checkpointing, wasted, and total
execution is shown in Fig. 12. From the figure we can
observe that the application specific parameters do not have
a significant impact on the improvements of power capping
aware OCI. This is expected because parameter A and B do not
directly impact the OCI estimation α+

t and α+
e (as noted earlier

in the modeling section). Also, we note that the OCI is same
for MG and EP. Note that slight difference in the percentage
reduction is because the execution time still depends on the
parameter A and B.

Finding 9: When comparing our power capping aware
OCI model with prior OCI models, percentage changes on
checkpointing, wasted, and total execution time are not highly
sensitive to the application-specific coefficients. Also, we show
that the platforms with higher temperature gradient w.r.t.
power capping benefit significantly more by applying power
capping aware OCI model.

Next, we also perform a sensitivity study on the time-
to-checkpoint. We present experimental results for β equals
to 5, 15, and 45 minutes. Fig. 13 shows that reduction
in checkpointing, wasted, and total execution time increases
when time to checkpoint increases. This reduction is even
more pronounced for lower power caps and shows significant
reduction in checkpoint time. This indicates that applying our
model can reduce the checkpointing, and total execution time
more significantly when time to checkpoint is larger.

Finding 10: Power capping aware OCI model has in-
creasing gains over prior OCI models as the time to checkpoint
increases. With increasing system/problem scales and relatively
slow growing I/O bandwidth, our model can obtain increasing
benefits in I/O bandwidth constrained systems.

Finally, we perform the evaluations based on the checkpoint
data size and execution time of leadership applications run on
OLCF machines [1], [2], as shown in Table I. Checkpointing
time is the quotient of checkpoint data size divided by average
PFS bandwidth. These leadership applications utilize applica-

tion level checkpointing instead of system level checkpointing.
Their checkpointing time does not necessarily scale up with
problem size, and is user-specific.

We keep the assumptions in this section except the check-
pointing time obtained from BLCR. We use average 10GB/s
bandwidth as obtained from Spider parallel filesystem (PFS)
attached to the the Titan supercomputer [32] to calculate
checkpointing time. Percentage changes for checkpointing,
wasted, and total execution time between prior OCI models
and our power-aware OCI model under different power caps
are shown in Fig. 14. We do not show results for reduction
in energy consumption due to space constraint, but energy
consumption follows similar trends as execution time, as
observed in Fig. 11.

As shown in Fig. 13, the checkpoint time has significant
impact on the savings achieved by power capping aware OCI.
Similarly, we see that applying our power-aware OCI model
to CHIMERA reduces the total execution time by 9% to 18%
compared to prior OCI models because it has large checkpoint
data size. Applications such as GTC and S3D have moderate
checkpoint data sizes. Total execution time decreases by 4%
and 2% respectively, when applying our power-aware model
to GTC and S3D. For applications with small checkpoint data
sizes, i.e., GYRO, POP, and VULCUN/2D, our power-aware
model has about the same total execution time as prior models.

Finding 11: Using the power capping aware OCI model,
applications with large checkpoint data size can achieve sub-
stantial reduction on checkpointing time and total execution
time over prior OCI models.

Although our OCI model has limited benefits in terms of
total execution time when application checkpoint data size
is small, it can still significantly reduce the total volume of
checkpoint data being written to storage systems. For GTC
and S3D, our model can reduce the checkpoint data volume
by up to 40% and 36% respectively. Even for applications
such as GYRO, POP, and VULCUN, our model can still
reduce the checkpoint data volume by up to 33%. This means
that less checkpoints are written to the storage system, which
helps resolving the PFS bottleneck problem, and improving
application and checkpointing I/O performance. We show
checkpointing data volume of CHIMERA for all four OCI
schemes in Fig. 14(d). The power capping aware OCI reduces
the checkpoint volume by 57% for 25 watts power cap level,
compared to the prior models. We also notice that the gap
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between our power capping aware OCI model and the first
order model increases when the power cap decreases.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we investigate the effects of power capping
on the optimal checkpointing interval. We study the effect
of power capping on compute and checkpointing phase for
a variety of scientific applications. We also demonstrate and
quantify how power capping affects the system reliability due
to change in temperature. We propose an power-aware OCI
model and validation shows that our model can accurately
predict the OCI under power capping. Our evaluation shows
that applying our model to a set of large-scale applications
can save up to 18% energy and execution time. Moreover, our
model reduces the volume of data movement by up to 57% for
these large-scale applications. In the future, we plan to extend
our model to support heterogeneous platforms and to consider
the impacts of manufacturing variations.
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