
Performance Comparison of Two Virtual Machine Scenarios Using
an HPC Application

A Case study Using Molecular Dynamics Simulations

Anand Tikotekar, Hong Ong, Sadaf Alam, Geoffroy Vallée,
Thomas Naughton, Christian Engelmann & Stephen L. Scott ∗

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Oak Ridge, TN, USA.

Abstract
Obtaining high flexibility to performance-loss ratio is a key
challenge of today’s HPC virtual environment landscape.
And while extensive research has been targeted at extract-
ing more performance from virtual machines, the idea that
whether novel virtual machine usage scenarios could lead to
high flexibility Vs performance trade-off has received less
attention.

We, in this paper, take a step forward by studying and
comparing the performance implications of running the
Large-scale Atomic/Molecular Massively Parallel Simula-
tor (LAMMPS) application on two virtual machine configu-
rations. First configuration consists of two virtual machines
per node with 1 application process per virtual machine. The
second configuration consists of 1 virtual machine per node
with 2 processes per virtual machine. Xen has been used as
an hypervisor and standard linux as a guest virtual machine.
Our results show that the difference in overall performance
impact on LAMMPS between the two virtual machine con-
figurations described above is around 3%. We also study the
difference in performance impact in terms of each configu-
ration’s individual metrics such as CPU, I/O, Memory, and
interrupt/context switches.

∗ORNL’s work was supported by the U.S. Department of Energy, under
Contract DE-AC05-00OR22725.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright © ACM [to be supplied]. . . $5.00

1. Introduction
High-performance computing is increasingly leveraging vir-
tualization due to its flexibility, such as the ability to per-
form fault-tolerance using live migration, the ability to ef-
ficiently allocate resources, the customizability according to
application requirements, etc. Yet, such flexibility cannot of-
ten offset the performance overhead of using virtualization
solutions. To alleviate this trade-off between the flexibility
offered and the generated performance hit, many in the HPC
community have looked at solutions that optimize hyper-
visors, kernels, I/O, etc. And while this vertical optimiza-
tion is certainly helpful, no such extensive research is being
extended to the efficacious use of virtual machines them-
selves. After all, virtual machines are nothing if not mal-
leable. Therefore, it seems reasonable to think that a novel
configuration of virtual machines could end up providing a
favorable trade-off between flexibility and the performance
impact. For example, based on an application’s communica-
tion pattern, communicating virtual machines could be kept
on the same nodes to free more nodes as spare nodes for
fault-tolerance. Another configuration design option is to de-
cide whether to create a separate domain for a monitoring
thread or add the thread to an existing domain. Many other
virtual machine configurations such as efficient resource al-
location of memory may be costly from a performance point
of view due to additional memory pressure, but can provide
certain flexibility by allowing to host another light-weight
virtual machine that uses idle time of the running applica-
tion for check pointing. The idea thus is to employ a vir-
tual machine configuration for which the “ratio of flexibil-
ity” offered to the performance impact is high. Two logical
questions arise: One, how to quantify the difference between
the flexibility offered by two virtual machine configurations?
Second, what, if any, is the performance impact between two
virtual machine configurations? Please note that all the dis-
cussion pertains to a fixed run of an application instance.

In this paper, we try to tackle the simpler of the two
questions, which is about the performance impact. We have
selected the following two virtual machine configurations.
Configuration 1 consists of two virtual machines per node
with 1 application process per virtual machine. Configura-
tion 2 consists of 1 virtual machine per node with 2 pro-
cesses per virtual machine. Please note that we are not claim-
ing that these configurations are suitable for this instance of
LAMMPS application. We only want to highlight the differ-
ence, if any, in the performance impact between these con-
figurations as they do the same amount of work.

Our contributions in this paper are the following: We
advocate the idea that virtual machines could be used in
novel ways so as to benefit the flexibility versus performance
impact equation. Second, we study the performance impact
of two virtual machine configurations on LAMMPS (12),
and report the overall as well detailed performance impact
of each configuration.

2. Related Work
Researchers in HPC domain have mainly focused on bring-
ing down the performance overhead of virtualization. To-
wards this end, the research is focused on efficient hyper-
visors such as Xen (2). Efficient I/O solutions are advocated
in (6), (8), (17) that seek to minimize the I/O overhead
of virtualization. Many other research efforts focus on using
lightweight domains (16), microkernels (3), and lightweight
kernels (15) to reduce the cost of the hypervisor itself. Many
studies have evaluated the performance impact of virtualiza-
tion on HPC applications. Such studies include (18), (9),
(5). The common conclusion is that Xen is efficient in exe-
cuting HPC applications.The flexibility aspect of virtualiza-
tion is mainly exploited for fault tolerance (10), (11) in HPC.

Grid computing has leveraged various usage and execu-
tion models of virtual machines. Vmplants (7) provides au-
tomatic configuration of virtual machines to meet various
application requirements. Other studies for resource provi-
sioning in grids include (14).

The idea of determining whether novel virtual machine
usage scenarios, configurations could lead to better flexibil-
ity vs performance-loss ratio in HPC has not been explored
in detail. Authors in (13) study whether intelligent managent
of virtual machines could improve the utilization of physical
resources or not. Authors in (4) compare their distributed
system MemX on three modes within Xen vm. These modes
include driver domain, and individual guest domain. In this
paper we compare two virtual machine configurations that
are similar to each other. In the paper (1), authors study the
network processing overheads in Xen on two configurations.
Their configurations include running I/O service vm and the
guest vm on the same CPU, and on a different CPU. The au-
thors are interested in comparing the network performance
in these two modes with the native mode. Our study deals
with determining if there is any impact on an HPC applica-

tion when subjected to two similar virtual machine configu-
rations.

3. Experimentation Description
3.1 Hardware and Software
We have used Xen 3.0.4 and linux kernel version 2.6.16.33
with FC5 distribution and NFS filesystem. Our cluster con-
sists of 16 nodes each with 2GHz processor with 768MB
RAM. Both of our virtual machine configurations use Xen
as their hypervisor and para-virtualized linux as their guest
operating system. Xen is responsible for domain schedul-
ing, aggregating domain I/O requests and responses, mem-
ory handling between domains, etc. Thus, it is easy to see
that Xen operates at domain level. Linux guest machines,
on the other hand, are responsible for their processes, their
internal memory, the aggregation of internal I/O requests
and responses. Therefore, guest machines are responsible for
their own affairs, and yet are dependent on Xen for their do-
main as a whole.

3.2 Methodology
Our methodology for the experiment consists of one VM-
stat process that runs per second per virtual machine. VM-
stat measures all the above metrics that we want to study.
Further, since vmstat is based inside a virtual machine, its
view is limited. Specifically, it does not have information on
other virtual machines or domains including the privileged
domain. Because, vmstat inside a guest vm does not have in-
formation on the privileged domain, metrics reported by vm-
stat such as system utilization, I/O blocks only reflect how
the guest vm receives and sends information. But since we
are comparing two virtual machine scenarios as described
above, the comparison is valid. Furthermore, a virtual ma-
chine containing the vmstat process does not have any infor-
mation about the events such as real interrupts, including I/O
interrupts, timer interrupts etc. The data collected by the vm-
stat process is only based on the virtual events delivered to it
by the underlying hypervisor, in this case, the xen hypervi-
sor. However, a guest virtual machine does have knowledge
about the real as well as virtual time in the case of xen. This
knowledge about the real time allows each virtual machine
to respect the periodic time, in our case 1 second, of the vm-
stat process. Apart from the real time, both configurations
treat xen as a black box when gathering data through vmstat.

3.3 The Two Scenarios
The first scenario which consists of running two virtual
or guest linux machines -with each machine executing one
application process- on one physical node which runs Xen
as the hypervisor, gives more control to Xen in handling the
execution of given application processes. Xen, in this case,
is responsible for domain scheduling, domain I/O request
response, memory management of the domains etc. This

setup is replicated across 8 physical nodes so as to have 16
virtual machines and 16 LAMMPS application processes.

On the other hand, the second scenario consists of run-
ning one virtual machine per node with two LAMMPS ap-
plication processes. This scenario gives more control to the
linux guest machine in which the processes are executing.
Specifically, the virtual machine is in charge of handling
the I/O request aggregation, internal memory management
of the two processes, scheduling between the processes, etc.
This setup is replicated across 8 virtual machines on 8 phys-
ical nodes so as to have 16 processes.

The comparison of these scenarios is valid only when
both scenarios are given the same amount of application
work to perform. Thus, in our experiment design, we have
tasked both scenarios with performing the same amount of
LAMMPS computing, which means the same number of
atoms and the interactions between the atoms. Moreover,
we have allocated the same total resources to each of our
scenarios. For instance, in both situations, each application
process will require the same amount of memory (231MB).
Please also note that from a particular physical node’s point
of view, it is executing two processes with the approximately
same total resources per node to manage no matter what
virtual configuration is on the node. And therefore, it is not
obvious to state which of the two configurations is beneficial
in terms of its performance impact.

Further, our experiment is not just intended to evaluate
the performance overhead of running applications on virtual
machines. Many papers including few of ours have estab-
lished that linux guest machines hosted by Xen are quite ef-
ficient in executing HPC applications (Please see section on
related work). The purpose of this paper is to highlight dif-
ferences, if any, in the performance impact between the two
virtual machine configurations on LAMMPS.

4. Results and Analysis
In section 3, we discussed our virtual machine configu-
rations. This section describes the overall as well as de-
tailed performance impact of these two configurations on
LAMMPS. To this end, we want to investigate key metrics
such as CPU utilization, memory and swap allocation, I/O
movement, and system metrics such as context switches,
interrupts, etc.

4.1 Overall Performance
The question of overall performance is answered by Table 1.
It shows that configuration 2 (scenario 2) is slightly more
efficient in terms of wall clock time taken to complete a
given run of LAMMPS. The wall clock time values are
averaged over 5 runs of each configuration. The standard
deviation in configuration 1 was 3%, while the standard
deviation for configuration 2 was 1.5%.

Virtual confs Wall clock time in seconds
2 VMs/node 1 MPI task/VM 1686
1 VM/node 2 MPI tasks/VM 1646

Table 1. Overall performance impact of the two scenarios

4.2 CPU Metrics
In this subsection, we present statistics on 5 CPU metrics
namely user, system, wait time, idle, and stolen time. All
numbers for CPU metrics are in percentages. Figures 1(a)
and 1(b) represent configuration 1, which runs two virtual
machines per node with 1 application process per VM. Fig-
ure 2 represents configuration 2, which runs two application
processes per VM with one VM per node.

The average CPU time distribution percentage numbers
for the virtual configuration 2 across user, system, wa, idle,
and stolen time are 63.9%, 9%, 0.7%, 20.4%, 6% respec-
tively. Please note that the virtual machine configuration 2
runs 2 application processes per VM/per node. The num-
bers in the case of configuration 1 are the following: 27.4%,
1%, 4.1% , 39.2%, 28.3% for the first VM and 26.4%, 1.2%,
4.5% ,39.5%, 28.4% for the second VM. The stolen time for
each vm in each configuration represents the time when the
vm wanted to run but was not scheduled. The idle time, on
the other hand, represents the voluntary wait by the vm. To
compare the cpu metrics of configuration 1 with configura-
tion 2, we must combine the cpu metrics of the two virtual
machines in configuration 1. To combine the two set of met-
rics for configuration 1, we can use the following argument.
First, the user and system time of each vm in configuration
1 can simply be added as the numbers represent the real
time (Since the stolen time is removed from the numbers).
Thus, the combined user and system time become 53.8%,
and 2.2% respectively. We can not add the idle time and I/O
wait times as they contain some busy time of other domains.
Second, since the busy time of configuration 1 is 56% (user
+ system), the idle time is 44% as a whole for configuration
1. Third, to get the I/O wait time out of the idle time, we
can use the proportion of the I/O wait time with respect to
the idle time of an individual vm of configuration 1. This
way the I/O wait time is estimated to be 2.6% for configu-
ration 1 and the remaining time, that is 41.4% as idle time.
Therefore, the numbers for configuration 1 are 53.8%, 2.2%,
2.6%, 41.4% and for configuration 2 are 63.9%, 9%, 0.7%,
26.4% (idle + stolen time). Next, we study the cpu metrics
individually for both configurations.

The first number is the CPU user utilization. The cpu
user utilization for configuration 1, which runs two virtual
machines on a physical node with each virtual machine
running one process, is 53.8%. Similarly, configuration 2
reports the number at 63.9%. A quick comparison shows
that from a physical node’s perspective, which holds the
CPU, there is significant difference. Yet there is not much

difference in the overall performance. There could be two
reasons. First, in configuration 1, it is possible that xen is not
able to exploit the idle time very effectively because of the
lack of guest process level knowledge. (It relies on the guest
to block and hand over the control) Second, in configuration
2, L2 cache and TLB misses could contribute to the higher
user utilization.

The second number from each set represents the system
utilization. As can be seen, configuration 2 has much higher
CPU system utilization than configuration 1. This may be
because of the number of context switches (please refer to
system metrics sections, where configuration 2 shows some
spikes in the number of context switches). Moreover, virtual
machine in configuration 2 has to schedule two linux pro-
cesses, whereas, in configuration 1, from a virtual machine’s
point of view only one process needs to be scheduled, while
xen has to schedule two domains. Please note that the system
utilization number in configuration 1 does not include the
time between domain switches, and domain scheduling by
xen. Furthermore, in configuration 2, due to high number of
context switches, a high TLB cost is also possible. The third
number reports an interesting difference between configura-
tion 1 and 2 with respect to the disk wait time. Since con-
figuration 1 has two virtual machines running, it has more
disk I/O and NFS mount pressure, which can be seen in its
wait time numbers. We will further discuss the I/O issue in
the I/O metrics section, but it can be seen that the wait times
are in part a reflection of how the aggregation of disk I/O
requests occurs. In case of configuration 2, for instance, the
aggregation of I/O requests is possible. Further, higher disk
wait time also implies higher idle time which is supported in
configuration 1.

4.3 Memory Metrics
In this subsection, we describe the relevant memory metrics.
Specifically, we discuss four memory metrics: active mem-
ory, inactive memory, free memory, and the amount of vir-
tual memory used. Figures 3(a) and 3(b) represent config-
uration 1 with default memory, which is 256MB per virtual
machine. Similarly, Figure 4(a) represents configuration 2,
which runs 1 virtual machine with 2 LAMMPS processes
with 512MB of memory. These figures describe how differ-
ent memory metrics have changed with time, but it does not
show average values for the memory metrics. Therefore, we
calculated the average values for these metrics. For config-
uration 1, we combined the averages of the two virtual ma-
chines to get a single set of numbers, so that we could com-
pare them with our second configuration (it may be noted
that the memory profiles of the two virtual machines in con-
figuration 1 are similar, as we would expect). The total av-
erage virtual memory allocated for any virtual machine is
given by:

AvailableRAM + Swapcommited−Freememory (1)

 0
 20
 40
 60
 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

us 0
 20
 40
 60
 80

 100 sys 0
 20
 40
 60
 80

 100 idle 0
 20
 40
 60
 80

 100 wa 0
 20
 40
 60
 80

 100
CPU Time with 2 VMs; each VM with 1 MPI task

st

(a) First Virtual Machine

 0
 20
 40
 60
 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

us 0
 20
 40
 60
 80

 100 sys 0
 20
 40
 60
 80

 100 idle 0
 20
 40
 60
 80

 100 wa 0
 20
 40
 60
 80

 100
CPU Time with 2 VMs; each VM with 1 MPI task

st

(b) Second Virtual Machine

Figure 1. CPU behavior for configuration 1

 0
 20
 40
 60
 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

us 0
 20
 40
 60
 80

 100 sys 0
 20
 40
 60
 80

 100 idle 0
 20
 40
 60
 80

 100 wa 0
 20
 40
 60
 80

 100
CPU Time with 1 VM; each VM with 2 MPI tasks

st

Figure 2. CPU behavior for configuration 2

Thus, the total average memory per virtual machine for
first configuration is 285.57MB, which is much greater than
256MB of RAM allocated. Similarly, in the second config-
uration, the average total memory commited is 509.68MB,
which is slightly less than 512MB allocated. Please note that
while the application memory required in each configuration
is the same, the actual higher memory allocated in configu-
ration 1 as compared to configuration 2 could be due to the
management of the resources. To refresh, application mem-
ory in configuration 1 is 231MB, and in configuration 2 it is
462MB (231*2).

Out of 285.57MB of memory commited/allocated in our
first configuration, the four metrics namely swap, free, inac-
tive, and active consume 20.15%, 3.05%, 18.69%, 57.60%
respectively. Similarly, for configuration 2, the numbers are
8.09%, 3.93%, 26.13%, and 61.83%. It is easily seen that
configuration 2 commits much less proportion of swap or
virtual memory as compared to the first configuration, which
is clearly confirmed by the fact that configuration 1 has more
memory pressure per virtual machine (Actual 256 versus 285
required for configuration 1, as opposed to 512 actual versus
509 required for configuration 2). The reason behind greater
memory pressure in configuration 1 compared to configura-
tion 2 is due to the fact that kernel is shared between the
two processes in configuration 2. Please note that we use
the word “allocated/commited” for swap memory because
of the fact that it was never actually used. This information
is extracted from the page in/page out columns of the vmstat
data. The page in/page out numbers are 0, and therefore not
shown here. Furthermore, the numbers reported here are av-
erages, and thus the simultaneous existence of free memory
and swap memory usage should not be construed as an error.
Other obvious observation is that both configurations have
the same average free memory proportion.

Next, we added 20% more memory to each virtual ma-
chine in both configurations to observe the effect of swap
commit usage, and subsequently the impact on other three
metrics. Figures 3(c) and 3(d) represent configuration 1
when 20% more memory is added per virtual machine. Sim-
ilarly, figure 4(b) describes configuration 2 with 20% more
memory. Both configurations now show the expected pat-
tern, that is the usage of swap is zero.

4.4 I/O Metrics
Figures 5(a) and 5(b) represent configuration 1, which runs
two virtual machines with one process per VM. Similarly,
Figure 6 represents configuration 2, which runs one VM
with 2 processes per VM.

As can be seen from these figures, the two virtual ma-
chines in configuration 1 report much more I/O activity than
configuration 2. Specifically, On average, each virtual ma-
chine in configuration 1 reports that 25.76 blocks were re-
ceived and 32.76 blocks were sent per second from the disk
device. Since these are absolute numbers, we should double
them so that we could compare configuration 1 with config-

 0

 50

 100

 150

 200

 250

 0 500 1000 1500 2000 2500

2 VMs, each with 256MB, 1 MPI
Swap Used

Free
Inactive

Active

(a) First VM - Default memory

 0

 50

 100

 150

 200

 250

 0 500 1000 1500 2000 2500

2 VMs, each with 256MB, 1 MPI
Swap Used

Free
Inactive

Active

(b) Second VM - Default memory

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000 1200 1400 1600 1800

2 VMs, each with 300MB, 1 MPI - 20% more memory
Swap Used

Free
Inactive

Active

(c) First VM - 20% more memory

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000 1200 1400 1600 1800

2 VMs, each with 300MB, 1 MPI - 20% more memory
Swap Used

Free
Inactive

Active

(d) Second VM - 20% more memory

Figure 3. Memory behavior for configuration 1

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

1 VM with 512MB, 2 MPI
Swap Used

Free
Inactive

Active

(a) Default memory

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600 1800

1 VM with 600MB, 2 MPI - 20% more memory
Swap Used

Free
Inactive

Active

(b) 20% more memory

Figure 4. Memory behavior for configuration 2

uration 2. Therefore, 51.52 blocks were received and 65.52
blocks were sent per second by configuration 1 as a whole.
By contrast, configuration 2 reports that 13.22 blocks, on av-
erage, were received per second and 19.99 blocks were sent
per second to the disk device. One reason behind why con-
figuration 1 reports much stronger I/O activity could be due
to less efficient aggregation of I/O requests and responses
by Xen as opposed to the linux virtual machine. However,
on average, the difference between the number of blocks re-
ceived and the number of blocks sent per second remains
very similar in both configurations, which is around 7 block-
s/second.

4.5 System Metrics
Figures 7(a) and 7(b) represent configuration 1. Similarly,
Figure 8 represents configuration 2. All these figures show
the number of system interrupts and the number of context
switched made. Configuration 1 shows that two virtual ma-
chines have almost identical behavior of system interrupts
and context switches, which we would expect. The aver-
age numbers of system interrupts for two virtual machines
are 680.7 and 723.06 respectively. Similarly, the numbers

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500

bl
oc

ks
/s

time

IO with 2 VMs; each VM with 1 MPI task
bi

bo

(a) I/O behavior of the first VM

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000 2500

bl
oc

ks
/s

time

IO with 2 VMs; each VM with 1 MPI task
bi

bo

(b) I/O behavior of the second VM

Figure 5. I/O behavior of the First Configuration

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

bl
oc

ks
/s

time

IO with 1 VM; each VM with 2 MPI tasks
bi

bo

Figure 6. I/O behavior of the Second Configuration

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500

N
o.

of
 In

te
rr

up
ts

time

system metrics with 2 VMs; 1 MPI/vm
intr
cs

(a) First VM

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500

N
o.

of
 In

te
rr

up
ts

time

system metrics with 2 VMs; 1 MPI/vm
intr
cs

(b) Second VM

Figure 7. System Behavior for configuration 1

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
o.

of
 In

te
rr

up
ts

time

system metrics with 1 VM; 2 MPI/vm
intr
cs

Figure 8. System Behavior of the Second Configuration

for context switches are 651.14 for first virtual machine and
681.7 for the second virtual machine. Therefore, for config-
uration 1 as a whole, the average numbers for interrupts and
context switches are 701.88 and 666.42 per second respec-
tively. The average numbers for configuration 2 are 1357.53
and 1698.1 per second for interrupts and context switches re-
spectively. Interestingly, configuration 2 shows some spikes
for the number of context switches, but the average number
of context switches in configuration 2 remains low. It can
be easily seen that by doubling the average numbers in con-
figuration 1, we get close to configuration 2. However, the
doubling exercise clearly shows that while the number of in-
terrupts in configuration 1 is more than configuration 2, the
opposite is true for context switches.

Further, while the figures show that the average numbers
of interrupts and context switches are similar in both con-
figurations, they do not follow a particular order. This may
be due to following scenarios: Not every interrupt causes
a context switch (such as if the Interrupt Descriptor Table
(IDT) entry does not point to a task-gate) and not every con-
text switch is associated with an interrupt (such as if a task
yields). Further, it is possible that certain interrupts may have
been masked and serviced later, or an interrupt may cause
multiple context switches. Please also note that, the VMstat
is configured to report every 1 second, and therefore, it is
possible that the boundary interrupts and context switches
may not be aligned.

5. Discussion
In this section, we try to fit the four metrics (CPU, mem-
ory, IO, and system) together into a big picture. First, we
can see that the percentage of CPU user time in configura-
tion 2 is much higher than in configuration 1, which sug-
gests that configuration 2 is efficient in terms of executing
application code. Yet, the wall clock times of configuration
1 and 2 do not reflect the higher difference between the user
cpu utilization. This could be due to the fact that the user
code weight may not be very high as compared to the system
code weight. Second, although configuration 2 has a higher
percentage of CPU utilization in general, which is seen by
the idle numbers, it also has a higher CPU system utiliza-
tion. The higher system utilization in configuration 2 may
be related to the higher cost of context switching, TLB and
cache misses. Third, application I/O behavior in configura-
tion 1 clearly reflects a far greater activity than configuration
2. This is confirmed by the higher disk wait time (wa) per-
centage in configuration 1, which is almost 4 times higher
than configuration 2. Higher I/O activity may also explain
why configuration 1 requires higher memory allocation.

From a flexibility standpoint, configuration 1 offers more
flexibility such as the ability to move virtual machines to
spare nodes in the case of faults without disrupting the
application. This added flexibility of configuration 1 could
be preferred to configuration 2, even though configuration 1

has more performance penalty than configuration 2. This is
the crux of our study

6. Conclusion
In this paper, we have shown that in terms of wall clock
time, the difference in overall performance is 3%, with con-
figuration 2 being more efficient. Yet, the four metrics that
we have studied reflect different results. CPU usage results
are interesting in terms of the disk wait, CPU idle num-
bers, and user code utilization. Memory allocation/usage is
also dissimilar in two configurations. Further, I/O behav-
ior shows a markedly different behavior in one configura-
tion with respect to another. Finally, system interrupts and
context switches are similar on average with few spikes for
context switches in configuration 2. To sum up, our study
provides details about the impact of virtualization on HPC
applications such as LAMMPS. The study specifically sheds
light on how different virtual configurations impact the over-
all performance, and also how the configurations impact the
individual performance metrics. Further the study finds that
there is some evidence to suggest that a linux virtual ma-
chine handles the application and its resources better than
Xen does. Moreover, a thematic implication of this study is
that application containers, such as linux virtual machines,
could be given more control than hypervisors such as Xen,
in handling applications and their resources for efficiency
purposes.

References
[1] Padma Apparao, Srihari Makineni, and Don Newell. Charac-

terization of network processing overheads in xen. In VTDC
’06: Proceedings of the 2nd International Workshop on Virtu-
alization Technology in Distributed Computing, page 2, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim
Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew
Warfield. Xen and the art of virtualization. In Proceedings
of the nineteenth ACM symposium on Operating System s
Principles (SOSP19), pages 164–177. ACM Press, 2003.

[3] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel:
an operating system architecture for application-level resource
management. In SOSP ’95: Proceedings of the fifteenth ACM
symposium on Operating systems principles, pages 251–266,
New York, NY, USA, 1995. ACM.

[4] Michael R. Hines and Kartik Gopalan. Memx: supporting
large memory workloads in xen virtual machines. In VTDC
’07: Proceedings of the 3rd international workshop on Vir-
tualization technology in distributed computing, pages 1–8,
New York, NY, USA, 2007. ACM.

[5] W. Huang, J. Liu, B. Abali, and D.K. Panda. A Case for
High Performance Computing with Virtual Machines. In 20th
ACM International Conference on Supercomputing (ICS ’06)
Cairns, Queensland, Australia, June 2006.

[6] Wei Huang, Matthew J. Koop, Qi Gao, and Dhabaleswar K.
Panda. Virtual machine aware communication libraries for

high performance computing. In SC ’07: Proceedings of the
2007 ACM/IEEE conference on Supercomputing, pages 1–12,
New York, NY, USA, 2007. ACM.

[7] Ivan Krsul, Arijit Ganguly, Jian Zhang, Jose A. B. Fortes, and
Renato J. Figueiredo. Vmplants: Providing and managing
virtual machine execution environments for grid computing.
In SC ’04: Proceedings of the 2004 ACM/IEEE conference on
Supercomputing, page 7, Washington, DC, USA, 2004. IEEE
Computer Society.

[8] Jiuxing Liu, Wei Huang, Bulent Abali, and Dhabaleswar K.
Panda. High performance vmm-bypass i/o in virtual ma-
chines. In ATEC ’06: Proceedings of the annual conference on
USENIX ’06 Annual Technical Conference, pages 3–3, Berke-
ley, CA, USA, 2006. USENIX Association.

[9] A. Menon, J. R. Santos, Y. Turner, G. Janakiraman, and
W. Zwaenepoe. Diagnosing performance overhead in the xen
virtual machine environment. In Proceedings of the 1st ACM
Conference on Virtual Execution Environments, June 2005.

[10] Arun Babu Nagarajan, Frank Mueller, Christian Engelmann,
and Stephen L. Scott. Proactive fault tolerance for HPC with
Xen virtualization. In ICS ’07: Proceedings of the 21st annual
international conference on Supercomputing, pages 23–32,
New York, NY, USA, 2007. ACM Press.

[11] Dan Pelleg, Muli Ben-Yehuda, Rick Harper, Lisa Spainhower,
and Tokunbo Adeshiyan. Vigilant: out-of-band detection
of failures in virtual machines. SIGOPS Oper. Syst. Rev.,
42(1):26–31, 2008.

[12] Steve Plimpton. Fast parallel algorithms for short-range
molecular dynamics. J. Comput. Phys., 117(1):1–19, 1995.

[13] Fernando Rodríguez, Felix Freitag, and Leandro Navarro. On
the use of intelligent local resource management for improved
virtualized resource provision: challenges, required features,
and an approach. In HPCVirt ’08: Proceedings of the 2nd
workshop on System-level virtualization for high performance
computing, pages 24–31, New York, NY, USA, 2008. ACM.

[14] P.; Dongyan Xu Ruth, P.; McGachey. Viocluster: Virtualiza-
tion for dynamic computational domains. In Cluster Comput-
ing, 2005. IEEE International, pages 1–10. IEEE Computer
Society, 2005.

[15] Ron Brightwell Suzanne Kelly. Software architecture of the
light weight kernel, catamount. In 47th Cray User Group
(CUG 2005), 2005.

[16] Samuel Thibault and Tim Deegan. Improving performance
by embedding hpc applications in lightweight xen domains.
In HPCVirt ’08: Proceedings of the 2nd workshop on System-
level virtualization for high performance computing, pages 9–
15, New York, NY, USA, 2008. ACM.

[17] Jian Wang, Kwame-Lante Wright, and Kartik Gopalan. Xen-
loop: a transparent high performance inter-vm network loop-
back. In HPDC ’08: Proceedings of the 17th interna-
tional symposium on High performance distributed comput-
ing, pages 109–118, New York, NY, USA, 2008. ACM.

[18] Lamia Youseff, Rich Wolski, Brent Gorda, and Chandra
Krintz. Paravirtualization for HPC Systems. In ISPA Work-
shop on XEN in HPC Cluster and Grid Computing Environ-
ments (XHPC’06), pages 474–486, December 2006.

