

Performance Comparison of Two Virtual Machine Scenarios Using an HPC Application - A Case study Using Molecular Dynamics Simulations

Anand Tikotekar, Hong Ong, Sadaf Alam, Geoffroy Vallée, Thomas Naughton, <u>Christian Engelmann</u>, and Stephen L. Scott

Computer Science and Mathematics Division Oak Ridge National Laboratory

3rd Workshop on System-level Virtualization for High Performance Computing (HPCVirt) 2009, Nuremberg, Germany, March 30, 2009 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Outline

- Background
- Objectives
- Experimental setup
- Evaluation methodology
- Overall and detailed results
- Conclusion
- Future work

Background

Virtualization is an increasing field of importance in HPC

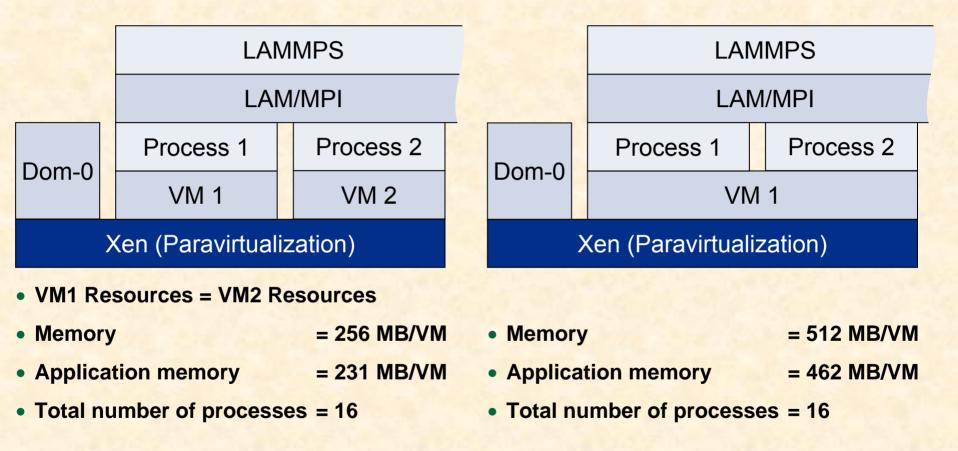
- Availability of low-overhead hypervisors, such as Xen
- Added efficiency through full utilization of resources
- Support for customized environments to fit application needs
- Increased flexibility for high availability and fault tolerance
- While overheads are low, they still exist
 - Virtualization of hardware resources causes performance hit
 - Compute-bound applications experience a lower overhead
 - I/O-bound applications have a higher overhead
- Quantifying these overheads beyond pure wall clock time
 - Can help to understand their root causes
 - Can offer tunable solutions for adaptation to individual application needs

Objectives

- Investigate novel virtual machine (VM) configurations
 - To obtain a benefits vs. performance-loss tradeoff
 - To reduce the performance overhead of virtualization, while maintaining important benefits of virtualization
- Evaluate the difference between two VM configurations that perform the same work with different flexibility
 - 2 VMs per single-core node, 1 process per VM
 - 1 VM per single-core node, 2 processes per VM
- Since overheads are application depended, we focus on a specific scientific application
 - LAMMPS, a classical molecular dynamics code

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)

- Parallel application that studies properties of particles over time
- Interaction through pair-wise forces using Newton's law
- Widely used from material science to computational biology
- Most algorithms reduce cost from O(n²) to O(n) through approximations
- Application setup:
 - LAMMPS protein benchmark: Rhodopsin protein in solvated lipid bilayer
 - 1,024,000 atoms, 100 timesteps


Input	Value
Atom style	full
Pair style	Ij (Lennard-Jones potential)
Bond style	harmonic
Neighbor modify	Delay 5, every 1 second
Kspace style	pppm

3rd Workshop on System-level Virtualization for High Performance Computing (HPCVirt) 2009, Nuremberg, Germany, March 30, 2009

System Setup

Configuration 1

Configuration 2

Physical node: Memory = 768MB, CPU = 2GHz, L2 Cache = 256kB, Local Root FS, NFS Setup of 1 physical node is shown. This setup is replicated across 8 nodes.

Evaluation Methodology

- Compare VM configurations with the same application run
 - Total wall clock time
 - Detailed CPU, memory, system, and I/O metrics
- Collection of metrics with VMstat process in each VM
 - 1 second sample frequency
 - CPU metrics: User, system, idle, I/O wait, stolen time
 - Memory metrics: Swap, free, inactive, active
 - System metrics: Interrupts and context switches
 - I/O metrics: NFS disk I/O blocks sent and received

Overall Performance Difference

Configuration 1

Configuration 2

Description	Wall clock time in sec	Description	Wall clock time in sec
2 VMs per node, 1 process per VM	1686	1 VM per node, 2 processes per VM	1646
Averaged over 5 runs	5	Averaged over 5 run	s
Standard deviation: 3	\$%	Standard deviation:	1.5%
• 2.4% slower		• 40 seconds faster	

Application phases	Wall clock time in %	Application phases	Wall clock time in %
Pair time	45.33	Pair time	46.05
Bond time	1.52	Bond time	1.61
Kspace time	32.5	Kspace time	33.01
Neighbor time	7.05	Neighbor time	7.12
Communication time	7.55	Communication time	6.97
Other time	6.05	Other time	5.24

3rd Workshop on System-level Virtualization for High Performance Computing (HPCVirt) 2009, Nuremberg, Germany, March 30, 2009

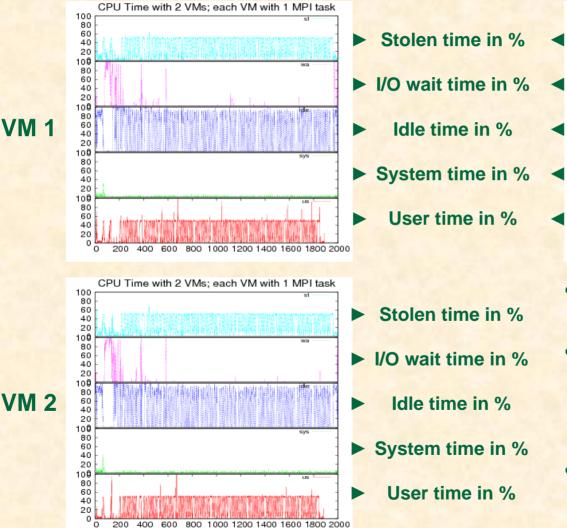
CPU Metrics: VMstat Average Data

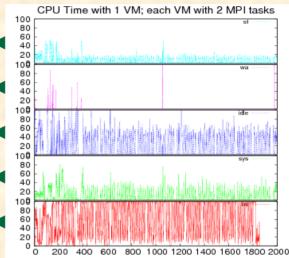
Configuration 1

Configuration 2

Metric	VM1 in	%	VM2 in %	Metric	VM1 in %
User time	27.4		26.4	User time	63.9
System time	1		1.2	System time	9
I/O wait time	4.1		4.5	I/O wait time	0.7
Idle time	39.2		39.5	Idle time	20.4
Stolen time	28.3		28.4	Stolen time	6
Martin and P				THE CONTRACTOR OF THE	
Metric		Config	guration 1 in %	Metric	Configuration 2 in %
Metric User time		Config 53.8	guration 1 in %	Metric User time	Configuration 2 in % 63.9
			guration 1 in %		, e
User time		53.8	guration 1 in %	User time	63.9

CPU Metrics: XenTop Average Data


Configuration 1


Domain	CPU time in %	Domain	CPU time in %
Dom-0	15.4	Dom-0	13
VM 1	31.2	VM 1	74
VM 2	31.2		
ldle	22.2	Idle	13
Total used Cl	PU time: 77.8%	Total used CF	PU time: 87%
• More idle tim	e	Higher CPU u	tilization

CPU Metrics: VMstat Sample Data

Configuration 1

Configuration 2

- Wall clock difference is 2.4%, but user time difference is 19.2%
- Configuration 1:
 - Xen may not efficiently exploit idle time
 - More NFS pressure with 2VMs
- Configuration 2:
 - More context switches
 - Higher L2/TLB misses?

3rd Workshop on System-level Virtualization for High Performance Computing (HPCVirt) 2009, Nuremberg, Germany, March 30, 2009

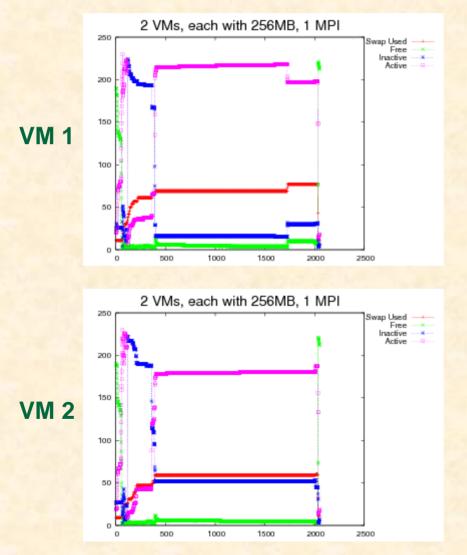
Memory Metrics: VMstat Average Data

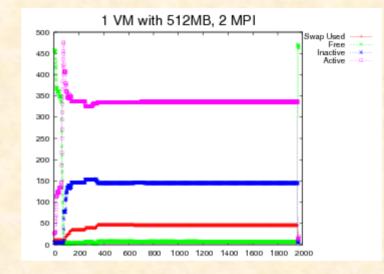
Configuration 1

Configuration 2

Metric	Per VM in %	, 0	Metric	Per VM in %	, 0
Swap allocated	20.1		Swap allocated	8.1	
Free	3		Free	3.9	
Inactive	18.7		Inactive	26.1	
Active	57.6		Active	61.8	
• Total available w	vithin a VM:	256.0 MB	• Total available w	vithin a VM:	512.0 MB
• Used per VM:		285.6 MB	• Used per VM:		509.0 MB

- Used by application process: 231.0 MB
- More used per VM due to resource management for 2 VMs on the same host
- Similar free amounts in both configs


• Less allocated swap, though not used!


Used by application process: 462.0 MB

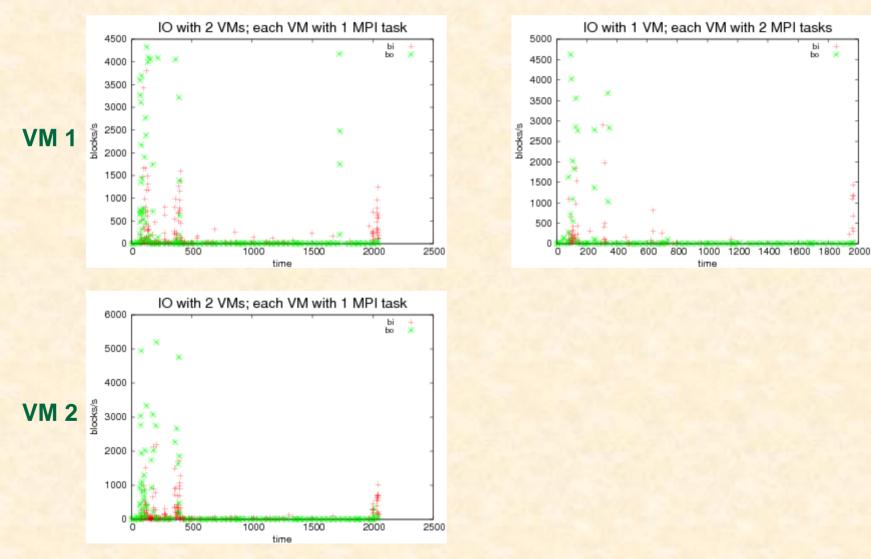
Remember, only 2.4% wall clock difference

Memory Metrics: VMstat Sample Data

Configuration 1

I/O Metrics: VMstat Average Data

Configuration 1


Metric		Metric	
Disk I/O blocks sent/sec	65.5	Disk I/O blocks sent/sec	20
Disk I/O blocks received/sec	51.5	Disk I/O blocks received/sec	13.2

- Much higher I/O activity
- Remember, only 2.4% wall clock difference
- No aggregation of I/O requests/responses
- Increased I/O activity may be the cause for the increased memory usage per VM
- XenTop: Dom-0 CPU time was 15.4%

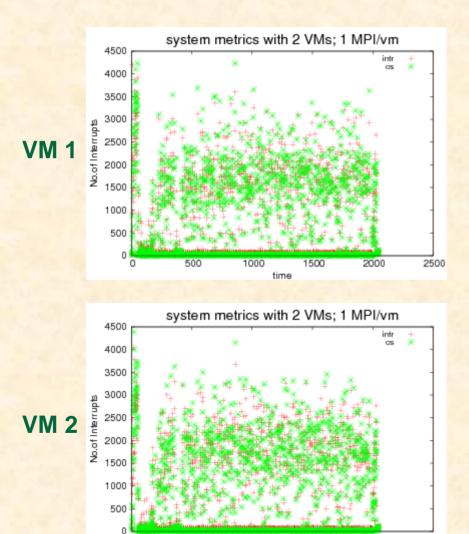
- Total number of block sent/received similar for both configurations
- Aggregation of requests/responses
 possible
- XenTop: Dom-0 CPU time was 13.4%

I/O Metrics: VMstat Sample Data

Configuration 1

System Metrics: VMstat Average Data

Configuration 1


Metric		Metric	
Number of interrupts/sec	1403.8	Number of interrupts/sec	1357.5
Number of context switches/sec	1332.8	Number of context switches/sec	1698.1

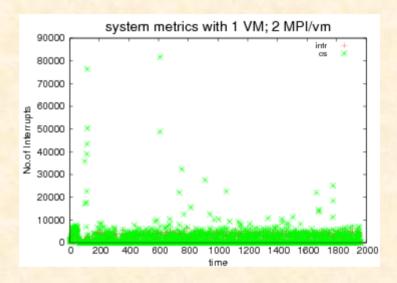
- 22% more context switches
- Probably higher L2/TLB misses
- May explain higher contribution to user and system utilization

System Metrics: VMstat Sample Data

Configuration 1

Configuration 2

500


0

1000

time

1500

2000

2500

Conclusion

- 8 VMs with 2 processes each is slightly more efficient than 16 VMs with 1 process each
- Overall performance difference is only 2.4%
- This study sheds light on how VM configurations impact an HPC application
- The investigation shows how Xen in configuration 1 and Linux in configuration 2 manage resources differently

Future Work

- Compare more VM configurations with and without hardware virtualization support
- Use tools such as Xenoprof along with VMstat and XenTop
- Study more, different HPC applications
- Study and quantify the effects of flexibility offered by various VM configurations

Questions?

3rd Workshop on System-level Virtualization for High Performance Computing (HPCVirt) 2009, Nuremberg, Germany, March 30, 2009 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY