
A Framework For Proactive Fault Tolerance12

Geoffroy Vallée
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37830
valleegr@ornl.gov

Kulathep Charoenpornwattana
Louisiana Tech University
Ruston, LA 71272, USA
kch020@coes.latech.edu

Christian Engelmann Anand Tikotekar
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37830
{engelmannc,tikotekaraa}@ornl.gov

Chokchai Leangsuksun
Louisiana Tech University
Ruston, LA 71272, USA

box@coes.latech.edu

Thomas Naughton
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37830
naughtont@ornl.gov

Stephen L. Scott
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37830
scottsl@ornl.gov

Abstract

Fault tolerance is a major concern to guarantee avail-
ability of critical services as well as application execution.
Traditional approaches for fault tolerance include check-
point/restart or duplication. However it is also possible to
anticipate failures and proactively take action before fail-
ures occur in order to minimize failure impact on the sys-
tem and application execution.

This document presents a proactive fault tolerance
framework. This framework can use different proactive
fault tolerance mechanisms, i.e., migration and pause/un-
pause. The framework also allows the implementation of
new proactive fault tolerance policies thanks to a modular
architecture. A first proactive fault tolerance policy has
been implemented and preliminary experimentations have
been done based on system-level virtualization and com-
pared with results obtained by simulation.

1 Introduction

Fault tolerance (FT) policies can typically be catego-
rized into two sets: reactive fault tolerance policies and
proactive fault tolerance policies. While reactive fault tol-
erance policies minimize the impact of failures on applica-
tion execution when the failure effectively occurs; proac-
tive fault tolerance policies aim at predicting failures and
move running applications away from nodes that are pre-
dicted to fail.

The reactive approach is the solution which is most of-
ten selected by fault tolerant systems. Typically the appli-
cation is periodically checkpointed and if a failure occurs,
part of or the whole application is restarted. Because this
approach is I/O intensive, we already know that this ap-
proach is not suitable for some classes of execution plat-
forms, e.g., large-scale systems [6].

Since proactive fault tolerance can predict failures, it
is possible to move applications away for nodes that are
about to fail. For instance [1] shows the interest of proac-
tive fault tolerance for MPI applications, using Charm++
capabilities for the migration of MPI processes, migra-
tion and pause/unpause being two standard mechanisms
for the implementation of proactive fault tolerance strate-
gies. In [5] the authors show the benefit of using virtual
machine (VM) migration for the implementation of proac-
tive fault tolerance capabilities. However, these solutions
directly implement a proactive fault tolerance policy into
the system. These systems will therefore not be optimal
for all execution platforms and applications.

In fact, the proactive fault tolerance approach creates a
number of challenges: fault prediction (based on hardware
monitoring mechanisms), prediction accuracy [9], imple-
mentation of a policy efficient for the target application
and the target platform and so on. However, it is very rare
to have the same set of monitoring capabilities on two dif-
ferent platforms. This heterogeneity and the fact that two
different applications do not have the same constraints in
terms of fault tolerance makes it impossible to have a “one-
size-fits-all” proactive fault tolerance policy.

1



The intent of this document is not to study all the chal-
lenges associated with proactive FT, nor reactive FT. This
paper focuses on a framework that eases the implementa-
tion of new proactive FT policies, based on abstractions
of the underlying mechanisms and a set of modular com-
ponents. The framework prototype is currently based on
Xen [3]. However, the architecture is designed to be easily
extended to other mechanisms, such as process migration
and process pause/unpause. This framework, coupled to
our fault tolerance simulator [8] provides a complete set of
tools for the study of proactive fault tolerance policies.

The remainder of this paper is organized as follows:
Section 2 presents the architecture of our framework and
Section 3 presents a brief description of our first prototype
which allows us to do preliminary experimentation; Sec-
tion 4 concludes.

2 Proactive Fault Tolerance Framework

To be used on High-Performance Computing (HPC)
systems, our framework has to respect the following con-
straints: (i) the overhead created by the system has to be
minimized when the system is healthy, (ii) the framework
has to be scalable in order to be used on modern large-scale
computing platforms, and (iii) the system is composed of
different kinds of node, from compute nodes for applica-
tion execution to service nodes which are specialized to
offer a specific service (e.g. I/O nodes). Since we target
mainly computationally intensive applications, we avoid
any extra computation on compute nodes; framework op-
erations are limited to the service node(s).

For simplification, we use the concept of a control node
which is used to implement the central component of our
framework. The actual implementation may not be on a
single node; this is only a logical view. The implemen-
tation of the controller can be done via distributed pro-
cesses working together or a single process with some du-
plication mechanisms in order to avoid the creation of a
single point of failure. For instance a solution for sym-
metric active-active replication can be used across multiple
physical nodes offering more than 99% of availability [4].
Networking techniques such as MRNet [7] may also be
used for communication between our controller and com-
pute nodes. Such techniques allow one to designate few
nodes for networking operations and are in charge of man-
aging communications in a scalable way. However, the
techniques used for the implementation of the control node

1ORNL’s work was supported by the U.S. Department of Energy, un-
der Contract DE-AC05-00OR22725.

2Part of this work has been completed as part of Google Summer of
Code 2007 project for Open Source Cluster Application Resources (OS-
CAR) under project name “Cluster Virtualization with Xen” mentored by
Geoffroy R. Vallee and presented in poster session at Oklahoma Super-
computing Symposium 2007, University of Oklahoma, Norman, OK

are beyond the scope of this document, since the imple-
mentation of scalable runtime systems for HPC is still a
very active research topic.

We select an event based architecture: information are
filtered locally on compute nodes and if an abnormal be-
havior is detected, an alarm (i.e., an event) is sent to the
control node. Then the control node analyzes the alarm
and may decide to proactively act to avoid a failure. This
avoids periodic polling and diffusion of data: only infor-
mation from local nodes are periodically extracted from
hardware probes but when the system is healthy, no events,
i.e., no communications or extra computation, is generated.

Since the solution presented in this document is de-
signed to be generic and flexible, different underlying
mechanisms may be used. These mechanisms may be from
a system-level virtualization solution (using VM pause/un-
pause and migration) to solutions providing process-level
pause/unpause and migration. The proactive FT mecha-
nisms can then deal with different granularity of comput-
ing entities: from processes to VMs. We use the generic
term computing entity in this document to refer to pro-
cesses or VMs or so.

2.1 Proactive Fault Tolerance Mecha-
nisms

To implement a proactive fault tolerance policy several
basic mechanisms are needed. First, we need to get data
from the system for failure prediction. When a failure or an
abnormal behavior is predicted, the fault tolerance policy
has to be activated and an action (such as application pause
or application migration) may occur.

Therefore our mechanisms are composed of three main
components: (i) the fault predictor, (ii) the policy daemon,
and (iii) the fault tolerance daemon (see Figure 1). Each

Figure 1. Architecture of the Fault Tolerance
Framework

of these components is based on our event system which



allows asynchronous communications and do not compro-
mise the framework in the case of failures.

Event System In order to minimize the communications
in the system, we have designed a subsystem called event
system to handle all communications inside our frame-
work. The event system is considered as a core of the
framework and provides an abstraction for communica-
tions between other framework components. It also allows
us to easily use any kind of communication system: from
the usage of sockets to the usage of overlay network such
as MRNet. The central concept of the event system is the
concept of a mailbox, which eliminates repeated global
data polling. Three parties are involved in the mailbox
system: i) subscribers, ii) publisher, and iii) a mailbox
manager. The mailbox manager creates a new mailbox;
other components of the system can register to the system
as a publisher or a subscriber. When an event is posted,
the mailbox manager tries to deliver (asynchronously) the
event to subscribers. Any component in the system could
be a subscriber and/or a publisher. Doing so all communi-
cations are asynchronous and even in the case of a failure,
the entire system is not compromised. Applying this tech-
nique to our framework ensures that no additional commu-
nication is generated between nodes when no events are
generated (e.g., in a healthy system). Moreover, the mail-
box manager is not implemented on compute nodes, the
computation generated by the mailbox handling does not
impact the application execution.

Fault Predictor The fault predictor (FP) runs on each
compute node and filters local information to predict fail-
ures based on system data. The data analysis allows us
to prevent a global polling approach for the implementa-
tion of the framework: events are generated by the FP only
if an abnormal behavior is observed. Modern operating
systems such as Linux include systems monitoring mech-
anisms based on hardware probes. Data from these probes
can be used for fault prediction. Currently the FP ana-
lyzes system logs to detect disk errors and also analyzes
hardware sensors using lm-sensor data to detect aberrant
system temperature. If such issues are detected, an alarm
is sent to the policy daemon on the master-node. We cur-
rently assume information taken from hardware monitors
is accurate and does not lead to false prediction.

Policy Daemon The policy daemon (PD) is composed
of two parts: a trigger that receives alarms from the com-
pute nodes, and the fault-tolerance policy. When an alarm
is received by the trigger, this alarm is identified by the
alarm type and the identifier of the alarm source, an in-
ternal event is then created and sent to the fault-tolerance
policy: the event activates the policy and according to the

system status, the event is analyzed. Since FPs are based
on low-level monitoring mechanisms which may have dif-
ferent behavior depending on available hardware sensors,
we provide a tool for the creation of new policies (see Sec-
tion 2.2).

Fault Tolerance Daemon Thus the fault tolerance dae-
mon (FTD) implements the fault tolerance protocol on the
compute node side, presented in Section 2.1.1. The FTD
triggers order of action from the PD. Since our framework
is based on only two mechanisms, pause/unpause and mi-
gration (for a VM [2] or a process), the FTD can only
perform computing entity migration, pause or unpause.
However, these actions differ in function of the underlying
mechanisms. For instance, if users do not want to modify
their OS and their application, it is possible to use Xen (the
fault tolerance granularity is then a VM); if users accept
to modify their OS, it is possible to use systems such as
Kerrighed which provides proactive fault tolerance mech-
anisms at the process level by modifying the Linux kernel.
For that, we include the concept of connector which is an
abstraction of underlying mechanisms such as tools for OS
virtualization. Therefore the concept of connector allows
us to provide a generic solution for proactive fault toler-
ance since different low-level mechanisms may be plugged
within our framework (a connector can be considered as a
plug-in in our framework).

2.1.1 Fault Tolerance Protocol

When a failure is predicted and if the proactive fault toler-
ance policy decides to preemptively migration or pause a
computing entity, the policy daemon (PD) has to commu-
nicate with the fault tolerance daemons (FTD) which are
running on the compute nodes. Even though we do not
address reactive fault tolerance in this document, we have
to be sure that communications between the PD and the
FTD end on a coherent view of the system. For instance,
if a node fails during the communication between the two
daemons, the PD has to detect it and notify the system ad-
ministrator that the status of the system is not coherent for
proactive fault tolerance.

Therefore, a negotiation between the PD and the FTD
takes place. Figure 2 presents the graph representing the
negotiation protocol when no errors occurs. If one error
occurs during the negotiation, i.e., if one or several nodes
cannot initiate the negotiation or cannot perform the proac-
tive fault tolerance action, the negotiation is canceled. If
this happens during a negotiation for migration, the migra-
tion is canceled; if this happens during a negotiation for
pause, computing entities already paused during the nego-
tiation are unpaused (through a new negotiation); and if
it is not then possible to fall back to a stable state (i.e., the



Figure 2. Protocol for Proactive Fault Toler-
ance in an Healthy System

state of a computing entity changed during the negotiation,
an error occurs but it is not possible to revert the negotia-
tion), it is considered as a failure therefore the proactive
fault tolerance policy daemon stops and notifies the sys-
tem’s administrator.

This protocol allows the framework to perform proac-
tive fault tolerance actions but is also tolerant to faults in
the sense that failures are detected and the framework stops
in order to avoid incoherent decisions.

2.2 Proactive Fault Tolerance Policies
Manager

A proactive fault tolerance policy has to address several
questions: When do I have to do something? Who am I sup-
posed to migrate or pause? and How can I do that? A way
to implement proactive fault tolerance policies is therefore
to implement an algorithm that answers these three ques-
tions.

A simple solution for that is to specify the policy via a
finite-state machine: each event leads to a new state and the
different phases of policy algorithm can also be viewed as
a state (for instance each of the three questions represents
different states). Figure 3 gives an example of such a pol-
icy where every time an alaram is received from a remote
node, the computing entities are moved away from that
node using spare nodes; when spare nodes are no longer
available, a healthy node is randomly selected for the mi-
gration, i.e., VMs are stacked.

In order to ease the development of new FT policies,
we provide a software developer kit (SDK). This SDK al-
lows developers direct access to data and features of the
PD such as the event trigger and the negotiation mecha-
nism to communicate with FTD on compute nodes. Since
we assume the policy may be defined via a finite-state ma-
chine, we provide a set of Python APIs and classes that
may be used to define or tune each framework components.
A high-level language for the specification of a finite-state
machine is also available, based on XML: an XML docu-

Figure 3. Example of a Finite-State Machine
for the Specification of a Proactive Fault Tol-
erance Policy

ment allows one to define each framework component and
a XSL-T document generates the associated policy code
(code based on the Python API).

3 Evaluation

The validation of our framework is not actually a sim-
ple task. Some may argue that it can be done by the im-
plementation of several policies but we think that such an
approach is not valid since it is lacking a reference to com-
pare to. Instead we decided to compare the results of the
implementation of a specific proactive fault tolerance pol-
icy with the results of the same policy obtained by simula-
tion. Our simulator [8] is based on the LLNL’s ASCI white
system system logs and our experimentation platform con-
sists of a 40 nodes cluster. Each physical node has a single
Xen VM having 250MB of memory (the number of VM
is explicitly specified if VMs are stacked on physical ma-
chines); host OSes have 200MB of memory.

We conducted two sets of experiments: using (i) 16
nodes, and (ii) 32 nodes. We also use two different con-
figurations of the HPCC benchmark application in order
to keep the application execution time as constant as pos-
sible: the HPCC problem size is 9000 when we use 16
nodes, whereas the problem size is 10700 for 32 nodes.
The increase in problem size was based on a trial and error
method. Note that the number of nodes and processes in-
crease the amount of time spent waiting for messages and
synchronization. Therefore the execution time does not in-
crease proportionally to the problem size.

The current framework has been implemented for
small-size to middle-size system. This choice is driven by
the fact that we validate the framework comparing the im-



pact of a specific policy using our framework and our sim-
ulator. Moreover, the implementation of a scalable runtime
system is still a very active research topic and the focus of
this paper is not to address scalability issues but only to
present a proof-of-concept prototype. However, the design
has been done with scalability in mind; scalability being
one of our next points of study. Based on this assumptions,
the framework is composed of n fault predictors (one on
each compute node), and one policy daemon and one fault
tolerance daemon, located on a single physical node (our
local control node is in fact implemented on a single node).
The current implementation uses one service node, which
is an acknowledged single point of failure.

Figure 4. Live Migration Overhead

We implemented the policy presented in Figure 3: if the
PD receives alarms from a remote node (which are gener-
ated based on the alarm pattern extracted from the system
logs used with our simulator), the VM(s) is migrated away
from that node using a spare node. If no spare nodes are
available, VMs are stacked on healthy nodes. We assume
wrong failure prediction does not occur in order to simplify
our model.

3.1 Evaluation Via Experimentation

To be able to compare experimental results and results
from our simulator, we first evaluate the overhead created
by the VM migration using Xen 3.0.2. Figure 4 shows the
overhead in application execution time when a VM is live
migrated to another physical node. The above experiments
were carried out with an application running on 16 nodes
and 32 nodes and having memory footprint of 45 MB and
30MB respectively on each node. The overhead is quite
small even after migrating 8 times. Moreover, there is not
much difference in the application execution overhead be-
tween the two sets of results. This is expected since Xen
has a very low downtime when live migrating a VM; the
overhead is quite small even after migrating 8 times (be-
tween 2.5 and 7%). However the time to migrate may

Figure 5. Impact of Virtual Machine Footprint
on the Migration Cost

change depending upon the hardware characteristics and
the VM’s memory footprint [2]; Figure 5 shows the “time
to migrate” as a function of the VM’s memory footprint
using our cluster.

Figure 6 describes the results when spare nodes are al-
ready used (all physical nodes have at least one VM run-
ning) and a live migration has to be done for proactive fault
avoidance (therefore several VMs have to be stacked on
a single nodes). The effect of stacking even one VM is

Figure 6. The Effect of VM Stacking on Ap-
plication Execution Time

staggering. The fact that the overhead does not increase
proportionately is due to the parallelism of the application.

3.2 Comparison With Simulation Results

We previously developed a simulator for fault tolerant
systems which allows us to study the behavior of different
policies modifying the algorithm for FT but also param-
eters of each mechanisms used by the FT policy and the
failure characteristics of the simulated platform (number
of failures, number of predicted failures and so on). For
instance, it is possible to specify the overhead of a VM
migration and the number and frequency of predicted fail-



ures. Based on these logs, the simulator typically repro-
duce a simular behavior for the simulated application life-
time, i.e., the simualtor produces events based on system
logs (typically failures) and evaluates the impact of the ap-
plication execution, taking into account the overhead of the
different fault tolerance mechanisms specified.

Figure 7. Comparison of Experimental Re-
sults and Results by Simulation

Figure 7 shows a comparison of the two sets of results:
the first set evaluating the proactive fault tolerance using
our framework on a real platform, and the second set sim-
ulating the platform. We can see that the results from the
simulator are close to the results using our framework. The
maximum deviation is 3% for 16 nodes. The deviation be-
tween the simulation and experimentations is mostly due to
the fact that in the simulator, the migration cost is constant
whereas on our platform the migration overhead differs as
a function of the number of node and the memory foot-
print of each VM. However, a 3% deviation is acceptable
and shows that our framework has an expected behavior,
i.e., does not introduce significant overhead.

4 Conclusion

The usage of proactive fault tolerance policies creates
multiple challenges: fault prediction, prediction accuracy,
implementation of an efficient policy for a specific set of
requirements and so on. The effort presented in this doc-
ument does not aim to address all these issues; it only ad-
dresses issues for the implementation of proactive fault tol-
erance policies for a given set of requirements (for instance
from execution platform and application characteristics).
For that, our framework is based on a modular architec-
ture which allows one to plug different proactive fault tol-
erance mechanisms (e.g., VM or process migration) and
to define different policies. Such a framework enables the
implementation of various fault tolerance policies, includ-
ing policies presented in the literature that were not vali-
dated by experimentation; therefore our framework, cou-
pled with our fault tolerance simulator, provides a com-

plete solution for the study of proactive fault tolerance
policies. The framework prototype currently provides a
single policy based on Xen VM migration but new poli-
cies are currently under development.

Other challenges associated with proactive fault toler-
ance are currently under investigation: the study of the pre-
diction accuracy when using modern hardware monitoring
probes; the analysis of failure logs for large-scale systems
over a long period of time; the improvement of our simu-
lator, and the implementation of a scalable runtime for our
framework (to target large-scale HPC systems). We are
also extending our framework for the support of reactive
fault tolerance policies.

References

[1] S. Chakravorty, C. Mendes, and L. Kale. Proactive fault
tolerance in large systems. HPCRI: 1st Workshop on High
Performance Computing Reliability Issues, in Proceedings
of the 11th International Symposium on High Performance
Computer Architecture (HPCA-11). IEEE Computer Society,
2005.

[2] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration of
virtual machines. In Proceedings of the 2nd ACM/USENIX
Symposium on Networked Systems Design and Implementa-
tion (NSDI), pages 273–286, Boston, MA, May 2005.

[3] E. Dragovic, P. Barham, K. Fraser, S. Hand, T. H. A. Ho,
R. Neugebauery, I. Pratt, and A. Warfield. Xen and the art
of virtualization. In the Proceedings of the ACM Symposium
on Operating Systems Principles (SOSP), 2003.

[4] C. Engelmann, S. L. Scott, C. Leangsuksun, and
X. He. Symmetric active/active high availability for high-
performance computing system services. Journal of Com-
puters (JCP), 1(8):43–54, 2006.

[5] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott.
Proactive fault tolerance for HPC with Xen virtualization. In
ICS ’07: Proceedings of the 21st annual international con-
ference on Supercomputing, pages 23–32, New York, NY,
USA, 2007. ACM Press.

[6] R. Oldfield. Investigating lightweight storage and overlay
networks for fault tolerance. In HAPCW’06: High Availabil-
ity and Performance Computing Workshop, Santa Fe, New
Mexico, USA, OCT 2006.

[7] P. C. Roth, D. C. Arnold, and B. P. Miller. Mrnet:
A software-based multicast/reduction network for scalable
tools. In SuperComuting Conference 2003, Phoenix, Ari-
zona, Nov. 2003.

[8] A. Tikotekar, G. Vallée, T. Naughton, S. L. Scott, and
C. Leangsuksun. Evaluation of fault-tolerant policies using
simulation. In Proceedings of the 9th IEEE International
Conference on Cluster Computing (Cluster), Austin, Texas,
USA, Sept. 17-20, 2007.

[9] D. Turnbull and N. Alldrin. Failure prediction in hardware
systems.


