
PDP – Toulouse, France – Feb 2008

A Framework for Proactive Fault
Tolerance

Geoffroy Vallee (ORNL)

Kulathep Charoenpornwattana (LATech)

Christian Engelmann (ORNL)

Anand Tikotekar (ORNL)

Chokchai “Box” Leangsuksun (LATech)

Thomas Naughton (ORNL)

Stephen L. Scott (ORNL)

ARES 2008 – Barcelona, Spain - 2

Context & Background

• Large-scale systems & long running applications
− hundred of thousands of nodes, individual components can fail
− specialized nodes (compute nodes vs. I/O nodes vs. login nodes)
− avoid any kind of overhead on compute nodes (priority to applications)
− Standard parallel applications (MPI-like applications)

• No Fault Tolerance (FT) intelligence in most parallel applications

• Basic fault tolerance solutions
− Production: reactive policies, i.e., how to react to a failure?
− Research: pro-active policies, i.e., how to anticipate failures?

• Different execution platform characteristics
− Failure distribution
− Predictable vs. unpredictable failures
− Platform types: disk-less or disk-full

Only pro-active FT is in the scope of this presentation

ARES 2008 – Barcelona, Spain - 3

Pro-active Fault Tolerance –
Introduction

Headnode w/ Fault Tolerant Job Scheduler
1: Alarm: disk
errors, so
migrate

Fault Tolerance
Policy (w/ failover
mechanism)

Xen VM

Fault Prediction
Based on

Hardware Monitoring

Fault Prediction
Based on

Hardware Monitoring

Node i Node k

Avoid
node

2: VM Live Migration

Network

.......

Pro-active Fault Tolerance Challenges

• Mechanisms challenges
− fault prediction
− prediction accuracy
− application manipulation

• migration
• pause/unpause

• Policy challenges – adaptation to
− platform characteristics
− application characteristics

No one-fit all solution
=> proactive FT framework

Platform Architecture Overview

• Specialized nodes
− “master node”

• logical centralized execution point for services
• may NOT be a single node, it is a logical view of where the distributed

services are hosted
− compute nodes

• where the application is running
• should avoid interferences from the framework

• Communication sub-system
• for scalability, we assume we reuse scalable communication sub-

systems (e.g., MRNet)
• efficient way to “push” data to the master node
• abstraction of the under-lying networking solutions

Pro-active FT Framework – Architecture

Policy Daemon
(PD)

Master Node Compute Node

alarms

migration

Fault Predictor
(FP)

Pro-active F
ault

T
olerance P

olicy

Fault Tolerance
Daemon (FTD)

Pro-active Fault Tolerance
Mechanism

(e.g., Live Migration of
Xen Virtual Machines)

migration

Framework Components – Event System

• Core of the framework: abstract all communications
between framework components

• Abstract the underlying communication sub-system
− abstraction of scalable sub-systems such as MRNet
− abstraction of the physical network solution

• Based on the concepts of mailbox, mailbox managers,
subscribers, and publishers

• Asynchronous, “tolerate failures” (i.e., missing readers)

• Very low overhead when the system is healthy

• No interference with applications running on compute
nodes

Pro-active FT Framework – Architecture

Policy Daemon
(PD)

Master Node Compute Node

alarms

migration

Fault Predictor
(FP)

P
ro-active F

ault
T

olerance P
olicy

Fault Tolerance
Daemon (FTD)

Pro-active Fault Tolerance
Mechanism

(e.g., Live Migration of
Xen Virtual Machines)

migration

Framework Components – Fault
Predictor
• Runs on each compute nodes

• Abstraction of the underlying mechanism for hardware
monitoring and fault prediction (typically hardware
probes)

• Filter data extracted from probes

• Prevent a global polling, creates an alarm only if probes
report abnormal behavior (alarm sent to the policy
daemon on the master node)

• Currently uses: lm-sensor, syslogs + experimental
support of IPMI

Pro-active FT Framework – Architecture

Policy Daemon
(PD)

Master Node Compute Node

alarms

migration

Fault Predictor
(FP)

P
ro-active F

ault
T

olerance P
olicy

Fault Tolerance
Daemon (FTD)

Pro-active Fault Tolerance
Mechanism

(e.g., Live Migration of
Xen Virtual Machines)

migration

Framework Components – Policy Daemon

• Implement the proactive FT policy

• Running on the master node

• Receive and analyze alarms sent from fault predictors

• If needed, sends an alarm for migration or pause to the
compute node

Pro-active FT Framework – Architecture

Policy Daemon
(PD)

Master Node Compute Node

alarms

migration

Fault Predictor
(FP)

P
ro-active F

ault
T

olerance P
olicy

Fault Tolerance
Daemon (FTD)

Pro-active Fault Tolerance
Mechanism

(e.g., Live Migration of
Xen Virtual Machines)

migration

Framework Components – Fault
Tolerance Daemon
• Running on the compute

nodes

• Abstract the underlying
mechanism for migration &
pause/unpause (concept of
connector)
− similar to plug-ins

• Receive alarms from policy
daemon for migration or
pause

Fault Tolerance
Daemon

pause() unpause()

Low-level Mechanism for
Pro-active Fault Tolerance

(e.g. Xen, Kerrighed)

pause() unpause()
Connector

Order of Action
From the Policy
Daemon

migrate()

migrate()

Pro-active FT Framework – Protocol
• Goal

− guarantee pro-active FT
− detect failures: avoid conflicts between reactive/proactive FT

Pro-active FT Policy – Example

Wait for
alarms

Find a spare
node for
migration

Migrate
VM to

spare node

Init

Alarm
Received

Choose
randomly a

node

Spare node
found

No spare
node available

Node selected

Migration
succeed

• PS: policy used for evaluation

ARES 2008 – Barcelona, Spain - 16

Experimentation Protocol

• 2 sets of experimentations: 16 & 32 nodes

• HPCC benchmark

• We argue that
− the implementation of multiple policies cannot validate the

framework (no reference)
− we can use our simulator as reference

• Policy presented in slide 15
− users can take benefit of a pool of spare nodes
− if a alarm is received, we migrate the VM away from the faulty

node
• using a spare node if any available
• stacking VMs on a random node if no spare node available

ARES 2008 – Barcelona, Spain - 17

Preliminary Experimentation &
Validation
• Comparison w/ our FT simulator

• Experimentation platform
− based on Xen 3.0.2
− 40 PIII nodes: HostOS has 200MB of memory; VMs 250 MB

• Simulator characteristics
− Cluster'07 paper [tiketekar]
− based on LLNL ASCI White System logs
− specification of many platform parameters: migration overhead,

platform characteristics and so on
− specify our physical platform characteristics

ARES 2008 – Barcelona, Spain - 18

Migration Overhead Evaluation

2 4 6 8
0

1

2

3

4

5

6

7

8

32 Nodes 16 Nodes

Number of Migration

%
 O

v
e

rh
e

a
d

 i
n

 A
p

p
li

c
a

ti
o

n
 E

x
e

c
u

ti
o

n
 T

im
e

ARES 2008 – Barcelona, Spain - 19

Impact of VM Memory Footprint on VM
Migration

64 100 150 250 300

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

32.5

Virtual Machine Memory Size (MB)

M
ig

ra
ti
o
n
 T

im
e
 (
in

 S
e
co

n
d
s)

ARES 2008 – Barcelona, Spain - 20

VM Stacking Effect

1 2 3 4
0

20

40

60

80

100

120

Number of Physical Nodes Having 2 VMs

%
 O

v
e

rh
e

a
d

 i
n

 A
p

p
li
c
a
ti

o
n

E

x
e

c
u

ti
o

n
 T

im
e

ARES 2008 – Barcelona, Spain - 21

Simulation vs. Experimentation

8 6 4 2
0

2

4

6

8

10

12
16 nodes – Experimenta-
tion
32 nodes – Experimenta-
tion
16 nodes – Simulation
32 nodes – Simulation

Number of Migration

A
pp

lic
at

io
n

E
xe

cu
ti

on
 O

ve
rh

ea
d

(in
 p

ou
rc

en
ta

ge
 o

f t
he

 a
pp

lic
at

io
n

ex
ec

ut
io

n
ti

m
e

w
it

ho
ut

 m
ig

ra
ti

on
)

ARES 2008 – Barcelona, Spain - 22

Conclusion & Future Work

• Proactive FT framework
− ease the implementation of new pro-active FT policies
− capable of supporting many different low-level mechanisms

• virtual machine migration & pause/unpause
• process-level migration & pause/unpause

− easily extensible

• Future work
− reactive FT support
− integration with scalable communication sub-system

• Scalable Tool Communication Infrastructure (STCI)

ARES 2008 – Barcelona, Spain - 23

Questions?

