
Unified Execution Environment
Geoffroy R. Vallée*, Thomas Naughton, Christian Engelmann and David Bernholdt

* (865) 574-3152 / valleegr@ornl.gov
Oak Ridge National Laboratory

Computer Science and Mathematics Division
Oak Ridge, TN 37831, USA

The design and development of new system software for HPC (both operating systems and run-times) face multi-
ple challenges, including scalability (high level of parallelism), efficiency, resiliency, and dynamicity. Guided by these
fundamental design principles, we advocate for a unified execution environment, which aims at being scalable, asyn-
chronous, dynamic, resource efficient, and reusable. The proposed solution is based on the following core building
blocks, (i) events, (ii) agents, and (iii) enclaves. We use these building blocks to support composable environments
that may be tailored to combine appropriate system services as well as user jobs. Additionally, for resilience and
scalability the proposed design encourages localized or regional operations to foster autonomy of execution contexts.
We advocate this approach for exascale systems, which include a massive number of heterogeneous computing re-
sources, since it enables architecturally informed structures (topologies) as well as encouraging efficient grouping of
functionality/services.

Events trigger notifications and interactions inside the system. This enables the implementation of asynchronous
capabilities and therefore improves scalability of the system. In order to support a wide range of interactions between
system entities, multiple event types are included: real time (time bounded delivery), standard (delivery guaranteed
without any time constraint), and optional (event can be dropped). These different types of events also limit the risk
of overflowing the event system when many events are triggered simultaneously. The event system also implements
a progress model to ensure that events are dispatched and delivered correctly, and be used to throttle events to avoid
overload.

Agents instantiate system services as well as user applications. This composition promotes a more efficient allo-
cation of resources due to the fact that applications and system services are combined into a single entity that may
work more tightly on resource utilization, etc. Agents also include the concept of contract. A contract involves the
definition of common interfaces and contextual properties or dependencies [4]. These additional dependencies allow
common interfaces to be supplemented for specialization to take advantage of unique capabilities in an underlying
implementation. For instance, it is possible to define a specific agent for the management of memory that guarantees
reliability. In fact, based on the underlying hardware, this agent could implement replication techniques or simply
rely only on the hardware. This also enables the definition of system services that support varied levels of service
guarantees (reliability), which ultimately facilitate scalability and resiliency. Finally, a system library can be used ei-
ther to implement new tools, run-times, system services or even applications (unified system), or encapsulate existing
software. Because agent setup is based on input from the user, resource manager, job scheduler, and even compilers,
it enables the optimization of resource allocation for the system services required for the execution of a given job, as
well as the deployment of new system services that assist running applications (for instance, a system service could be
deployed to enable background compression of application data).

Enclaves are the last key concept. An enclave is a logical group of agents that have tight interactions. An enclave is
designed to be light-weight (low system footprint), sparse, and dynamic (a enclave can dynamically grow and shrink).
Each enclave instantiate its own event engine, which is used for interactions between agents in the same enclave. They
also support a simple event API for inter-enclave interactions, such as dynamic agent management between enclaves
(i.e., agent migration). Enclaves can also be organized hierarchically to manage multiple enclaves without limiting
the scalability of the overall system. Finally, default enclaves are setup based on the hardware characteristics and the
overall system configuration. For instance, service nodes could host a I/O enclave. As a result, enclaves are the basic
objects used for the deployment of the composition representing a user job; agents being the low-level instantiation of
the execution contexts representing the job, as well as the required system services.

Ultimately the proposed solution provides a unified execution environment which aims at: (i) ease scalability at
extreme scale by incorporating the locality constraints directly into the key system services, as well as using only
sparse representations of system objects and using asynchronous operations; (ii) ease fault tolerance by avoiding any
central point of failure and abstracting all execution contexts and any global synchronization or notification in the

1



context of failures; as well as including the concept of contract (in other terms quality of service) for system services;
(iii) improve the integration between the different system software tools and run-times for efficiency; (iv) improve
resource management, including memory, by revisiting the design of basic system-level resource management in the
context of distributed computing, including by a fine-grain management of resource affinity and locality.

Related Work
Configurable and composable system software has been studied by several research projects and at a very general
level by granularity, degree of configurability and phase/time when the configuration takes place [5]. The techniques
used to perform the composition vary based on these characteristics. A common technique in recent years has been to
decompose the system into components with clear interfaces to enable composition. The ConfigOS [6] project investi-
gated a framework to support OS construction via a component-based approach. A similar approach has been taken to
compose HPC services at the runtime level [1, 3]. There have These library based approaches allow for dynamic con-
figuration of required capabilities and simplify loading of alternate versions at run time, (e.g., hardware accellerated
communication implementations, debug-enabled services, etc.). The ParalleX project [2] is combining lightweight
execution threads with an active message based communication system for use in their runtime system. This approach
to communication provides efficient use of hardware and is well suited for asynchronous communication.

Assessment
Challenges addressed: The event-based approach we advocate is very well suited to accommodate the needs to
support asynchronous and adaptive messaging layers. Also, the unified execution environment aids with reliability
and fault tolerance by allowing for common services to be replicated over a set of Agents (i.e., Enclave). This can
then be combined with the event-based approach to allow for different levels of service to fulfill differing reliability
requirements.

Maturity: The different concepts gathered by the proposed solution have been previously and individually pro-
posed in different studies. However, this is the first time a proposed solution is combining them and applied to HPC.
As a result, the proposed concepts are recognized as good candidates to address the identified challenges.

Uniqueness: To the best of our knowledge, this is the only solution that combines all the proposed concepts.
Because it enables scalability as well as composition based on characteristics of the underlying hardware, we believe
this is a excellent candidate for exascale. However, since the key idea is to provide a solution that is “hiding” ever
changing hardware characteristics by providing more abstract system services and enabling application composition
for adaptation to the execution platform, we claim that the proposed solution is suitable for any HPC platforms.

Novelty: To the best of our knowledge, this is the only proposition that supports dynamic application composition
without compromising scalability and minimizing the resources used by the system. It is also the only solution that
could unify all traditional system services available on HPC platforms.

Applicability: Since a unified execution environment abstracts the hardware and provide a simple but yet extensi-
ble interfaces and semantics for the implementation of new run-time systems, it is a good candidate for the implementa-
tion of a new programming language. This includes cases where the compiler may use input from the run-time system
in order to perform optimizations at compile time. Furthermore, because of the event-based and distributed nature of
the architecture, a unified execution environment provides all the characteristics required for the implementation of
resiliency capabilities, dynamic adaptation, as well as new policies and techniques for load balancing.

Effort: Because of the concept of agent and composition, it is possible to reuse existing software (legacy libraries,
run-times, and tools) or develop new solutions that will better suite the unified execution environment. In fact, only the
core concepts need to be define during the first phase of the project , as well as the associated system library. Then, the
team will be able to identify required system services and target applications for the development of a more extensive
unified execution environment, based on the latest identified characteristics of exascale platforms. In other terms, the
proposed solution is not limited by any technological choices.

2



References
[1] Darius Buntinas, George Bosilica, Richard L. Graham, Geoffroy Vallée, and Gregory R. Watson. A Scalable

Tools Communication Infrastructure. In Proceedings of the 22nd International High Performance Computing
Symposium (HPCS’08). IEEE Computer Society, June 9-11, 2008. Session track: 6th Annual Symposium on
OSCAR and HPC Cluster Systems (OSCAR’08).

[2] Hartmut Kaiser, Maciek Brodowicz, and Thomas Sterling. ParalleX: An advanced parallel execution model for
scaling-impaired applications. In Proceedings of the International Conference on Parallel Processing Workshops,
ICPPW ’09, pages 394–401, Washington, DC, USA, 2009. IEEE Computer Society.

[3] Jeffrey M. Squyres and Andrew Lumsdaine. The component architecture of open MPI: Enabling third-party
collective algorithms. In Vladimir Getov and Thilo Kielmann, editors, Proceedings, 18th ACM International
Conference on Supercomputing, Workshop on Component Models and Systems for Grid Applications, pages 167–
185, St. Malo, France, July 2004. Springer.

[4] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2002.

[5] Jean-Charles Tournier. A survey of configurable operating systems. Technical Report TR-CS-2005-43, University
of New Mexico, 2005.

[6] Jean-Charles Tournier, Patrick G. Bridges, Arthur B. Maccabe, Patrick M. Widener, Zaid Abudayyeh, Ron
Brightwell, Rolf Riesen, and Trammel Hudson. Towards a framework for dedicated operating systems devel-
opment in high-end computing systems. ACM SIGOPS Operating Systems Review, 40(2):16–21, April 2006.

3


