
A Runtime Environment for Supporting Research in
Resilient HPC System Software & Tools

Geoffroy Vallée, Thomas Naughton, Swen Böhm, and Christian Engelmann
Oak Ridge National Laboratory

Computer Science and Mathematics Division
Oak Ridge, TN 37831, USA

Email: {valleegr, naughtont, bohms, engelmannc}@ornl.gov

Abstract—The high-performance computing (HPC) commu-
nity continues to increase the size and complexity of hardware
platforms that support advanced scientific workloads. The run-
time environment (RTE) is a crucial layer in the software stack for
these large-scale systems. The RTE manages the interface between
the operating system and the application running in parallel
on the machine. The deployment of applications and tools on
large-scale HPC computing systems requires the RTE to manage
process creation in a scalable manner, support sparse connectivity,
and provide fault tolerance. We have developed a new RTE that
provides a basis for building distributed execution environments
and developing tools for HPC to aid research in system software
and resilience. This paper describes the software architecture of
the Scalable runTime Component Infrastructure (STCI), which is
intended to provide a complete infrastructure for scalable start-up
and management of many processes in large-scale HPC systems.
We highlight features of the current implementation, which is
provided as a system library that allows developers to easily
use and integrate STCI in their tools and/or applications. The
motivation for this work has been to support ongoing research
activities in fault-tolerance for large-scale systems. We discuss the
advantages of the modular framework employed and describe two
use cases that demonstrate its capabilities: (i) an alternate runtime
for a Message Passing Interface (MPI) stack, and (ii) a distributed
control and communication substrate for a fault-injection tool.

I. INTRODUCTION

The runtime environment (RTE) is an important layer in
the high-performance computing (HPC) software stack. The
RTE sits between the operating system and the application,
interfacing with both. The runtime, in coordination with the
job manager and the resource manager of the platform, is
traditionally responsible for the creation, monitoring and ter-
mination of processes on compute nodes in the context of a
given run of an application. Therefore this layer must be able
to accommodate a variety of platform specific interfaces, e.g.,
to job and resource managers. The RTE also must provide
appropriate support for applications and higher-level interfaces,
e.g., the Message Passing Interface (MPI).

As part of our research in system software and resilience
for HPC we have developed a runtime called, Scalable runTime
Component Infrastructure (STCI). This RTE provides a basis
for building distributed execution environments and developing
tools for HPC. Many of the challenges that are emerging in
HPC require enhancements and customizations at the RTE
level. For example, the ever-increasing size of large-scale
systems raises concerns regarding decreasing system mean
time to failure (MTTF) rates. The HPC community, both

application scientists and system developers, has to review
the software stack to identify proper mitigation strategies.
This point was highlighted in recent reports that indicated
an increased need by runtimes to support HPC application
resilience [1], [2].

Changes to improve scalability and resilience will result
in new interfaces and the RTE must be adapted to support
such enhancements. However, existing/legacy interfaces must
be maintained as well. Therefore a modular and extensible
approach is needed. The expertise required to develop and the
overhead to maintain runtime software also mandates such a
design in order to assemble the RTE building blocks to tailor
the system for different use cases. As such, the STCI system
is component based and leverages the Modular Component
Architecture (MCA) infrastructure to allow different services
to be constructed by combining individual components. This
MCA functionality is the same component infrastructure that
was developed for flexibility in the Open MPI project [3].

In this paper we provide an updated summary of the
software building blocks offered by STCI. We review the cur-
rent design and highlight features of the implementation. We
discuss the advantages of the modular framework employed
and describe two use cases that demonstrate these modular
building blocks: (i) as an alternate runtime for an MPI stack,
and (ii) as a distributed control and communication substrate
for a fault-injection tool. The main contributions are:

• An updated description of the STCI runtime;
• Details on capabilities offered by the RTE; and
• Two use-cases showing support for HPC resilience research.

The remainder of this paper is organized as follows, in Sec-
tion II we discuss the software architecture and in Section III
provide details on the current implementation. We describe
the two use-cases and initial evaluation results in Section IV.
In Section V we highlight related work on HPC runtime
environments. Finally, in Section VI we provide concluding
remarks and plans for future work.

II. SOFTWARE ARCHITECTURE

HPC systems can vary deeply in terms of configuration:
some are based on a job scheduler for the assignment of
an “allocation” to a user for the execution of a run of their
application (users never have direct access to the compute
nodes; all tasks are performed via the job manager), while
some other platforms provide direct access to compute nodes
(for instance via SSH). Because STCI aims at being scalable,



the creation of execution contexts (typically processes) across
compute nodes is particularly important. For instance, if the
execution contexts are created in a linear manner, the startup
time will become prohibitive on very large scale systems, e.g.,
with 100,000 compute nodes.

The second main challenge for the implementation of a
scalable process management infrastructure is fault tolerance:
because of the scale of the target systems, many distributed
hardware components are involved in the execution of a job
and the probability of a failure increases with the size of the
job. In the context of this study, we do not aim at providing
fault tolerant mechanisms for the job itself, but we intend to
detect failures, report them, maintain communication channels
between the different execution contexts of the job, and give
the opportunity to users and/or applications to decide the
best policy to apply (from clean termination of remaining
job’s processes to automatic recovery). To achieve this, the
STCI architecture is based on the notion of topologies that
abstract the management of communication channels inside
the deployed infrastructure, as well as, mechanisms for fault
detection, process restart and fine-grain management of com-
munication channels.

Furthermore, since HPC platforms can be very different in
nature (both in terms of hardware and software configuration),
it is important to be able to customize and optimize the soft-
ware environment to a given target HPC platform. To provide
this feature, STCI is based on a modular architecture in which
“frameworks” implement certain software capabilities and are
composed of “plug-ins”. As a result, by selecting different
plug-ins, it is possible to adapt both the system mechanisms
and policies that are internally used in STCI. Section III-A
gives more details about the design and implementation of the
modular architecture.

A. Agents

In order to separate the system aspects (such as resource
allocation) from the job management, the STCI architecture
is based on the concept of agents. Three different types of
agents have been defined: root agents (typically system agents),
session agents (specific to a job), and tool agents (specific to a
“tool”, a tool being a self-contained part of a job, e.g., one of
the binaries of a job when the parallel application is composed
of different sub-applications). For simplification, we refer to
agent instantiations as processes but STCI has been designed to
support different instantiation methods, for instance via threads
(see Section III-C).

Root agents are in charge of resource allocation and release.
Thus, these agents are privileged agents. Only one root agent is
on each compute node and is used to deploy other agents (both
session and tool agents). Root agents may be shared between
jobs.

Session agents are in charge of instantiating a job on a
given compute node. This is not a privileged agent and it acts
on behalf of the user. A single session agent is deployed on
compute nodes of a given job allocation. In some configura-
tions, the session agent may be used to deploy tool agents.

Tool agents are instantiating the job itself, multiple tool
agents can be deployed on compute nodes of a job allocation,

and all tool agents act on behalf of the users. These are
generally the end-user’s executable, e.g., a MPI application
binary.

In addition to these agents, a Controller agent is running on
the HPC system. The Controller is in charge of creating an in-
ternal representation of a job. The Controller is also responsible
for coordinating the deployment of the different agents and the
creation of communication channels between the agents. The
communication channels are organized based on topologies
(e.g., trees and meshes). These topologies describe how all
the different agents, i.e., the Controller, the Root Agents, the
Session Agents, and the Tool Agents can communicate with
each other. Figure 1 presents an example tree-based topology.
Topologies are also used to set routing tables (which are then
used to send messages from one agent to another).

Controller Agent 

Root Agent 

Session Agent 

Tool Agent 

Fig. 1. Example STCI Topology that connects agents in a tree-based fashion.

Finally, a Front-end agent runs on the user’s machine or on
the HPC system login node, and interacts with the Controller.
This separation enables the implementation of advanced mech-
anisms, so that the Front-end can connect/disconnect to/from
the HPC platform without compromising the execution of the
user’s job.

B. Topologies

The concept of topology is key in the STCI architecture: it
describes how the different agents are connected to each other
and how messages should be routed during communications
between agents.

STCI implements a few key topologies: trees, meshes, and
binomial graphs (BMGs) [4]. For instance a k-ary tree is
used to deploy agents across the compute nodes, providing
a scalable startup. For fault detection, a mesh topology is
used for the detection of root agent failures. Finally, a BMG
topology is instantiated for the deployment of a fault tolerant
communication infrastructure by providing redundant commu-
nication channels between agents. All the topologies are using
the communication substrate to instantiate the links between
the agents (see Section II-E).

Finally, STCI provides a boot topology which describes
how the agents of a given job are connected to each other.
This allows us to have sparse connectivity, and therefore ease



the implementation of scalable capabilities. Currently, the boot
topology is a k-ary tree.

C. Launcher

For the deployment of a job, STCI is implementing a
launcher. If the system is configured based on a job manager,
the launcher typically interacts with it for the deployment
of the agents. For example, on Cray supercomputer systems,
Torque and Application Level Placement Scheduler (ALPS)
are respectively in charge of allocating resource to a job and
deploying processes on compute nodes. In such a context,
STCI first queries Torque to get a list of nodes and then interact
with ALPS for the creation of the root agents on compute
nodes. Once the root agents are in place, communication
channels are setup between some root agents and the controller
based on the boot topology. Then, it is possible to send
information to the different root agents so the session and tool
agents can be created.

Two challenges are raised for the development of any
launch policy: what is the best method for the deployment
of all the agents on a target platform to guarantee scalability
(e.g., start root agents first using a tree and then ask the root
agents on each node to start local session and tool agents)?
And, how will the agents actually be created (e.g., using SSH
or ALPS)? To address this challenge the launcher capability
is separated into two different entities: a low-level launcher
(called launcherproc) that is in charge of deploying a process
based on a known method (e.g., SSH), and a “driver” that
orchestrates the deployment of agents using one or more
launcherproc plug-ins and implementing a policy that is scal-
able in a given context (called launcher). By separating these
two aspects, it is possible to easily support new mechanisms
for the creation of processes (e.g., ALPS) and implement new
policies (it is possible to easily develop a new launch policy
optimized for a target platform).

D. Event System

The runtime includes an event system to support the
operations that are performed while managing the execution
environment. This event driven model provides a good basis
for providing fairness when servicing requests and supporting
an asynchronous execution model. An event is an abstraction
that ties some occurrence in the system to an action. The action
is defined in an event handler. A dispatcher is responsible for
running these event handlers when the event is triggered. When
an event gets triggered an event activation object is assigned
to the dispatch queue for that particular event’s domain. An
event domain is a container that keeps track of all events and
associated observers that registered as a recipient for these
events.

These elements are combined to create the event loop that
drives the system forward. A STCI agent may choose different
modes for entering this event loop based on how work should
be performed. How the agent chooses to enter the event loop
defines the progress model for that agent. The agent may
choose an implicit progress or explicit progress model. The
explicit approach makes progress via direct invocation of a
progression function at appropriate locations in the implemen-
tation, whereas the implicit approach defers progress to the

event system and all progress is based entirely on handling
events. The implicit model is often an effective mode for
daemon or system processes that should only perform work in
the presence of events and otherwise idle in the background.

E. Communication Substrate

The STCI communication substrate is composed of two
different communication sub-systems: a bootstrapping com-
munication substrate named bootcom and an active message
communication substrate.

Note that we do not provide any high performance commu-
nication substrate, which is a completely separate challenge in
the context of large-scale HPC systems. However, it is possible
for application developers to use STCI for the deployment
of tools and applications, and then extend the tool agents to
initialize a third-party high-performance communication sub-
system (STCI has been designed to not generate any system
noise outside of the process management tasks in order to
avoid degrading the performance of any high-performance
networking solution).

1) Bootstrapping Communication Substrate: The STCI
bootstrapping communication substrate is based on the fol-
lowing requirements: (1) it must be self-bootstrapping; (2)
communications are reliable and ordered; (3) it must support
sparse connectivity; (4) it must implement fine-grained state
monitoring of all communication links between agents to
avoid sending messages to an agent that already terminated or
was previously reported as failed; and (5) it must implement
asynchronous communications.

To initialize the communication substrate in the context of
an agent, the launcher passes “parent” information along with
bootstrapping data. The parent is defined as the parent agent in
the tree based boot topology. Based on this information, during
the agent bootstrapping, a communication link is opened with
the parent, and then the two agents perform a handshake.
Also, all agents maintain a routing table for the communication
substrate. When a message is received from an agent and if
this is not the final destination, we lookup the next hop and
forward the message. During the bootstrapping phase of an
agent, the parent is added to the routing table as the default
route.

2) Active Message Communication Substrate: STCI pro-
vides different active message interfaces, which are specialized
for communication at different levels of the STCI architecture.
They all have the following requirements: (1) communications
are reliable; (2) blocking/non-blocking send; (3) avoid copies
when the user is not ready for the data, that is, memory needs
to be left in the library buffers, with users releasing it, if this is
not done within the call to the AM function. (4) it must support
sparse connectivity; and (5) it must implement asynchronous
communications.

The three different APIs are: (1) point-to-point, non-routed
fragment-based communications; this layer is used to support
the upper-level AM layers; (2) point-to-point, routed messages-
based communications; this API can be for routed communi-
cations (message granularity instead of fragment granularity);
(3) stream based, routed message-based communications; a
stream being defined as an overlay network connecting differ-
ent agents. A stream typically relies on a topology to describe



how agents are connected. This topology will also ultimately
drive the routing of messages between the peers. Currently for
simplification, it is assumed that a stream is based on a tree
topology and the communications over a stream are based on
an up/down premise.

a) Low-level Active Message Layer: As stated earlier,
the granularity of the communication is a fragment. No routing
is performed, instead, fragments are sent on a direct connection
between two peers. At the moment, it is assumed that this layer
will perform fragmentation.

b) Mid-level Active Message Layer: In contrast to the
low-level active message layer, the communication granularity
is a message that is routed between peers. The main respon-
sibility is this layer is to provide message routing.

c) High-level Active Message Layer: This layer pro-
vides the support for stream-based communications using the
up/down primitives. The routing component is in charge of
defining the route over a user-defined topology. Note that STCI
provides a default stream where the root of the stream is the
controller and the leaves are all tool agents of the job. This
stream is used, for instance, for I/O forwarding. Users can also
create additional streams using a dedicated stream API.

F. Fault Tolerance

For fault tolerance purposes, we provide two capabilities:
failure detection and a fault tolerant topology. These two
capabilities ensure that even if a node fails or if an agent fails,
it is still possible to send/receive messages to/from agents that
are still alive. This allows the user to decide the best policy
to apply in the context of a failure, for instance, triggering the
clean termination of remaining agents.

1) Fault Detection: A key point to tolerate failures is
first of all to detect failures. STCI provides support for both,
inter- and intra-node fault detection. By detecting failures, it
is possible to update routing tables and eventually re-establish
communication channels between agents to ensure that we can
still control alive agents. In that context, we propose a set of
detectors.

a) Detectors for Inter-node Fault Detection: A mesh-
based detector that establishes connections between root agents
and reports an error if a connection is closed. A separate
detector establishes connections between root agents based on
a mesh topology and performs a periodic ping-pong. If the
ping-pong fails, a failure is reported.

b) Detectors for Intra-node Fault Detection: A wide
range of detectors could be implemented for the detection of
process or thread failure. STCI currently provides a detector
for the failure of processes, which is a signal-based detector
that can be used to detect the local failure of any session or
tool agent (when they die, the generated SIGCHLD signal is
caught).

2) Communication Fault Tolerance: Since our boot topol-
ogy is tree-based, the failure of any agent will prevent com-
munication between different parts of the tree, leading to
unreachable agents. To address this issue, we setup a BMG
topology [4] that provides redundant communication links
between agents. As a result, even if communication channels

are closed because of a failure, it is possible to find another
route to reach the destination, wherever the destination is.

3) Failure Notification: The failure notification sub-system
is designed to propagate any local notification from detectors.
This component aims at abstracting the way the propagation
is made. For instance, a type of detectors may rely on a
broadcast notification method, whereas others may rely on
point-to-point communications or a tree-based fan-in/fan-out
method. Each detector should register a notification method.
For simplification, we assume at the moment that a detector is
using one and only one notification mechanism. Since multiple
types of detectors can be active at the same time, multiple
notification mechanisms can also be active at the same time.

4) Error Manager: The error manager is in charge of
implementing the consensus policy for failure recovery. This
covers simple policies such as cleanly terminate the rest of the
job to more advanced policies that restart and/or reconfigure
the RTE infrastructure to cope with a detected failure. As
previously stated, the goal is not to recover the application
but the RTE infrastructure in order to guarantee correctness
of all system-level services that the application may require.
Like any policy in a distributed or parallel environment, it
can be decomposed into two parts: (i) the part that receives
the data based on which actions are decided on (failure
notifications) and decides a set of actions (decision making)
and (ii) the part that implements such actions on a given
node. The decision making software component is called the
Global Recovery-Manager, while the component performing
the actions is called Local Recovery-Manager. Even if the
logical separation can always be made, a simple policy may
implement the two together. In case the global and local
components are implemented separately, the communication
requirements between the two is based on the design of the
policy. Therefore, we do not provide any generic interfaces;
we assume existing communication mechanisms are used.

III. IMPLEMENTATION

This section presents details about the current STCI im-
plementation. We highlight the aspects that are relevant in the
context of scalable and fault tolerant process management.

A. Modular Architecture

The STCI runtime is based on a library initially imple-
mented in the context of the Open MPI project [5]. The
Open Portable Access Layer (OPAL) library allows to abstract
some of the low-level system APIs and provides some generic
classes such as graphs and lists. We also reuse the Modular
Component Architecture (MCA) from OPAL, which provides
basic capabilities for the implementation of modular archi-
tectures based on plug-ins that can be selected, loaded, and
parameterized. Since the normal MCA framework performs a
selection of applicable plug-ins at load time, we implemented
an extension for a dynamic selection of plug-ins based on
parameters. For instance, topologies are implemented via a
framework where each type of topology (at the moment, trees,
meshes and BMG) are implemented through a plug-in. On
top of this framework, we implemented an object class with
which the underlying plug-in is dynamically selected during
the creation of a new object. As a result, the framework is



loaded at initialization time, only once, but it is still possible
to perform the selection of the best underlying plug-ins based
on run-time parameters (such as the topology type).

B. Fault Tolerant Bootstrapping

As mentioned previously, the goal of the STCI project is
to provide a scalable and fault tolerant process management
infrastructure. An issue that is often overlooked, but that will
become critical at exascale when deploying applications and
tools composed of millions of processes, is the failure of
processes during application startup. For instance, most users
assume that when submitting a job, the application will come
up at some point. In the worst case, the application startup
fails and users try again by submitting a new job. At extreme
scale, this approach is not sustainable: the probability to have
a failure during the application startup is actually very high.

The same problem applies in the context of STCI: how
can we ensure that the infrastructure bootstraps correctly
despite the occurrence of agent failures? For that, we separated
the initialization of the STCI infrastructure into two distinct
phases: a bootstrapping phase where the basic infrastructure
and the basic STCI services (e.g., communications between
agents) are not yet fully setup, and an initialization phase
where higher-level services are setup using the basic STCI
capabilities. We think that it is important to separate the two
phases because during bootstrapping, the possible actions to
detect and tolerate failures are very limited, whereas during
the initialization phase, it is possible to use the basic STCI
infrastructure to detect and recover failures.

For root, session or tool agents, the bootstrapping phase is
typically the creation of the process in the context of the agent
and then the creation of communication links that reflect the
boot topology. Thus, at the end of the bootstrapping phase,
agents are reachable by their “parent” in the boot topology
(the boot topology is currently a tree) and the new agent
assumes that the parent is the default route for any received
message for which the route is not explicitly available. To
detect failures during the bootstrapping phase, we combine
timers with the handshake mechanism at the communication
substrate level: when we create an agent, if the handshake
does not occur within a window of time, the agent is assumed
failed during bootstrapping. In such a situation, the current
implementation terminates all remaining running agents; a
future implementation will try to restart the failed agent.

Once a given agent has finished the bootstrapping phase,
it starts the initialization of the remaining capabilities. These
capabilities are typically the deployment of the BMG topology,
the initialization of the failure detection mechanisms, and the
initialization of the consensus policy for failure recovery. When
these services are initialized, the agent is assumed running.

C. Agents Implementation

Currently, agents are implemented via heavy-weight pro-
cesses. However, root, session and tool agents have been
designed so they can be implemented differently, for instance
using threads. For this, it will only be required to implement a
new launcher that creates threads instead of processes, and to
update the communication substrates to support communica-
tions between threads. Current APIs implemented by STCI

should not need to be modified. In other terms, only new
plug-ins for the launcher, bootcom and the active message sub-
system have to be developed for the usage of execution entities
different than processes.

IV. USE CASES

In this section we discuss two relevant use-cases for HPC
that demonstrate the applicability of the STCI runtime. The
first instance involves the use of STCI as an alternate runtime
for an existing MPI implementation. The second instance
describes the use of STCI to support building a fault-injection
tool for resilience experimentation.

A. Alternate Runtime for MPI

To demonstrate and validate the usability of STCI as an
alternate runtime for an MPI implementation, we selected the
Open MPI prototype because of the technical similarities be-
tween the two projects (we use OPAL and the MCA framework
support initially developed in the context of the Open MPI
project).

The Open MPI prototype is composed of three different
software projects: OPAL, which abstracts the underlying oper-
ating system and, to some extend, the underlying hardware;
Open RunTime Environment (ORTE), the default runtime
system for Open MPI; and the implementation of MPI itself,
named OMPI. Fortunately, the Open MPI community lately
included an abstraction layer for the underlying runtime. As a
result, Open MPI easily supports the ORTE, as well as, PMI
(PMI — process manager interface — support is required for
systems that provide only a micro-kernel, for which ORTE
is not an option). This abstraction provides a generic API
for out-of-band communications and for a naming service
to identify, select and manipulate processes that implement
MPI ranks. Based on this we developed a plugin specific to
STCI for this abstraction layer, mapping each function to a
corresponding STCI set of APIs. With the resulting prototype,
STCI can be used to deploy, monitor and terminate an MPI
job. The MPI ranks are instantiated via tool agents and the
STCI communication substrate is therefore used during the
deployment and termination of the job, as well as, for I/O
forwarding, monitoring and failure management (potentially
from detection to recovery of the RTE infrastructure). The
HPC communication substrate of Open MPI is still used
for all performance-critical MPI communications, including
collective operations.

Based on this prototype, we also initiated the implementa-
tion of a fault tolerant MPI prototype. That work is based
on the ongoing MPI 3.x standardization effort in the MPI
Forum, which is focusing on User-Level Failure Mitigation
(ULFM) [6] capabilities for MPI applications.

B. Runtime Support for Fault Injection

Fault injection, i.e., the purposeful triggering of faults dur-
ing parallel application execution, is becoming an invaluable
tool to study the impact of faults and to validate mitigation
mechanisms, both at runtime. We leveraged the modular STCI
runtime to develop a tool to help with fault-injection exper-
iments for HPC resilience. The basic pieces of the finject



prototype are: (i) front-end and distributed control, (ii) experi-
ment setup/management, (iii) monitoring and event logging,
and (iv) fault injection mechanisms. The finject prototype
is implemented as an optional STCI framework that can be
enabled at compile time. This “fi” (fault-injection) framework
provides components that implement different fault-injection
mechanisms, e.g., process kill (“pkill”) for process fail-stop
tests. Additionally, a customized Front-end is provided that of-
fers a simple user-interface for starting resilience experiments
relying on these fault injection capabilities. The target for the
experiments is the end-user application that will be subjected
to the injection of intentional errors, which can be used to
study their effects on the given application. A customized STCI
agent is launched to manage the experiment called the target
manager. We leverage the communication substrate offered by
the runtime for triggering events, logging their occurrence and
forwarding the output of the target application.

Controller	  

Target-‐Mgr	   Target-‐Mgr	  Target-‐Mgr	  

Target	  App	   Target	  App	   Target	  App	  

FrontEnd	   Failure	  Events	  	  
&	  System	  Logs	  

Fig. 2. Basic structure for the fault injection tool.

The general structure of the framework to support building
fault injection tools using the STCI runtime is shown in
Figure 2. The custom finject Front-end is the agent that actually
starts the other agents and is simply a modified version of the
standard STCI Front-end (“stcirun”). The Controller is slightly
modified to include the additional “fi” framework that relays
user-triggered events from the Front-end to the job using a
specific “fi:ctrl” component. The Root agents are not shown
in the diagram but are used in their normal fashion as described
in Section II-A. The Session agents and the Tool agents are
tailored to provide the Target Manager and the Target entities
shown in Figure 2. The agent identifiers, communication
substrate, and I/O forwarding services provided by the runtime
are useful for creating failure event logs and capturing the state
of the system during the tests.

The current finject prototype is still very basic, but the
STCI building blocks allow for embedding this tool into the
infrastructure, so that it can be enabled at runtime as needed.
These types of on-demand testing and diagnostic capabilities
will become more important as developers continue to work
on the challenges of resilience for HPC tools and applications.

V. RELATED WORK

The Multipurpose Daemon (MPD) [7] is designed to be
a generic and scalable processes management system that
was used in the context of MPICH. MPD sets up a set of
system daemons (privileged daemons) on each compute node
of the HPC platform and set up a communication ring between
them. When a user starts a job, the system daemons start
on each node a management daemon, called managers, that
runs on behalf of the user and spawn processes that ultimately
instantiate the job (e.g., MPI tasks), which are called clients.

A communication ring is set up between the managers. Also,
managers redirect I/O, i.e., stdin, stdout, and stderr, from/to
the clients; and a binomial tree is set up between the managers
for the communications related to I/O redirection. MPD was
also designed to provide some fault tolerance capabilities
in the context of the system daemons and the managers.
Unfortunately, the usage of rings limit the scalability of the
system, and the use of a binomial tree may not be the more
efficient topology on all HPC systems, especially those based
on a 3D-torus network.

The Process Management Interface (PMI) [8] has been
defined to be a generic interface for process management of
parallel systems, that could be used for the implementation of
various parallel programming library such as MPI. The key
concept of PMI is the separation of the resource manage-
ment capabilities (e.g., start/stop processes) from the creation
of communication channels between the different execution
contexts of a given job (e.g., communications between MPI
tasks). To the best of our knowledge, PMI does not specify
any fault tolerance capability to deal with failures during
the startup of parallel jobs, and PMI does not provide any
particular capabilities for the specification and instantiation of
various topologies for communications in the context of a job.
Several implementation, such as Hydra [8] in the context of
MPICH [9], implements the PMI interface. On Cray platforms,
an extended version of PMI is provided that does include some
additional features to support system-level checkpoint/restart.

As mentioned in Section IV, Open MPI uses the Open
RunTime Environment (ORTE) [10] as its default runtime
system. ORTE offers several useful features for debugging MPI
applications and has a mature set of features. The STCI project
was started by several members of the Open MPI project
to explore alternate approaches for HPC resilience. As such,
the OPAL and MCA systems used by Open MPI and ORTE
are also used in STCI. An early design for the project was
presented in Buntinas et al. [11] and detailed the initial plans
and motivation behind a Scalable Tools and Communication
Infrastructure (STCI).

The Simple Linux Utility for Resource Management
(SLURM) [12] is a cluster job scheduling and resource man-
agement solution designed to provide high scalability (to tens
or hundreds of thousands of compute nodes), fault tolerance,
and high job throughput. Architecturally, SLURM shares sev-
eral characteristics with STCI. A SLURM cluster contains at
least one control daemon (slurmctld) which is responsible for
keeping track of the state of the entire cluster, scheduling
batch jobs, and launching and monitoring processes within
the cluster. For fault tolerance, the control daemon may be
supplemented by a backup control daemon which can take over
for the primary daemon in the event of a failure. The control
daemon communicates with daemon processes (slurmd) that
run on each compute node and are responsible for launching
and monitoring the user processes that make up a batch job.
For scalability, the slurmd processes arrange themselves into a
tree topology (by default, this is a 50-ary tree). Functionally,
the slurmctld is similar to the STCI controller agent while
the slurmd is similar to the STCI root agent. Further, the tree
topology used by the slurmd processes is similar to the current
default bootstrap topology of the STCI root agents (as well
as session agents and tool agents), although agents in STCI



would generally add additional arbitrary topologies to allow
more efficient communication patterns after bootstrapping.
Similarities between SLURM and STCI are also reflected in
the fact that both pieces of software are readily extensible
via software plug-ins. Perhaps the largest difference between
SLURM and STCI is that SLURM is intended to manage
resources within a cluster on behalf of a batch job while
at the same time remaining orthogonal to the program (or
programs) making up the job. STCI, on the other hand, is
usually intended to, at some level, link directly to a user’s
program in order that it can act as a run-time software layer
to control process launching and monitoring as well as inter-
process communication at a finer level of granularity.

VI. CONCLUSION

We have described the software architecture for the STCI
process management infrastructure for high-performance com-
puting. The runtime is being used to support ongoing research
activities in fault-tolerance. The modular runtime includes
support for monitoring and process failure detection. A topol-
ogy abstraction is used throughout the process management,
monitoring and communication regions of the runtime to
provide a consistent means of describing configurations for
performance and/or resilience purposes.

The goal of the STCI architecture is not necessarily to
provide fault tolerance capabilities for applications and tools,
but instead to tolerate failure at the infrastructure level so
that users have the opportunity to be notified of failures and
decide the appropriate actions (including clean termination of
remaining processes, or continuation with surviving processes).
The architecture separates initialization of the infrastructure
into two phases: (i) a bootstrapping phase where available
capabilities are limited, constraining the options for fault
tolerance, and (ii) an initialization phase during which more
capabilities are available, which enables the implementation
of more advanced fault tolerant techniques. As a result, the
window of time during which the overall infrastructure is
more likely to not tolerate a failure is decreased. After the
initialization is complete, STCI provides fault tolerance ca-
pabilities such as failure detection, redundant communication
links, which guarantee that even in the context of failure, the
infrastructure remains functional based on the alive processes.

We have used the STCI prototype to develop an alternate
runtime for use with the Open MPI implementation of MPI.
This is being used to support resilience research into the cur-
rent draft from the MPI Fault Tolerance Working Group (MPI-
FTWG). The MPI-FTWG has a reference implementation of
their proposal that is based on Open MPI. As part of our future
work we plan to support the MPI-FTWG’s extensions using
our STCI runtime backed version of Open MPI. We are also
using the STCI prototype to develop resilience tools, e.g., fault-
injection tools, to support HPC resilience experiments.

VII. ACKNOWLEDGMENTS

We would like to acknowledge the individuals that have
contributed to this project in the past, including Richard Gra-
ham, Wesley Bland, Joshua Hursey, Christos Kartsaklis, Rainer
Keller, Gregory Koenig, Pavel Shamis and Chao Wang. We
also would like to thank the Oak Ridge Leadership Computing
Facility for supporting this work.

This manuscript has been authored by UT-Battelle, LLC,
under Contract No. DE-AC05-00OR22725 with the U.S. De-
partment of Energy. The United States Government retains
and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish
or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes.

REFERENCES

[1] J. Daly, B. Harrod, T. Hoang, L. Nowell, B. Adolf, S. Borkar, N. De-
Bardeleben, M. Elnozahy, M. Heroux, D. Rogers, R. Ross, V. Sarkar,
M. Schulz, M. Snir, P. Woodward, R. Aulwes, M. Bancroft, G. Bron-
evetsky, B. Carlson, A. Geist, M. Hall, J. Hollingsworth, B. Lucas,
A. Lumsdaine, T. Macaluso, D. Quinlan, S. Sachs, J. Shalf, T. Smith,
J. Stearley, B. Still, and J. Wu, “Inter-agency workshop on hpc resilience
at extreme scale,” Feb. 2012.

[2] N. DeBardeleben, J. Laros, J. T. Daly, S. L. Scott, C. Engelmann, and
B. Harrod, “High-end computing resilience: Analysis of issues facing
the HEC community and path-forward for research and development,”
Whitepaper, Dec. 2009.

[3] B. Barrett, J. M. Squyres, A. Lumsdaine, R. L. Graham, and G. Bosilca,
“Analysis of the component architecture overhead in Open MPI,” in Pro-
ceedings, 12th European PVM/MPI Users’ Group Meeting, Sorrento,
Italy, September 2005.

[4] T. Angskun, G. Bosilca, and J. Dongarra, “Binomial graph: A scalable
and fault-tolerant logical network topology,” in International Sympo-
sium on Parallel and Distributed Processing and Applications, pp. 471–
482.

[5] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, concept, and design of a next generation MPI implementation,” in
Lecture Notes in Computer Science: Proceedings of the 11th European
PVM/MPI Users‘ Group Meeting (EuroPVM/MPI) 2004, vol. 3241,
Budapest, Hungary, Sep. 19-22, 2004, pp. 97–104.

[6] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and J. J.
Dongarra, “An evaluation of user-level failure mitigation support in
MPI,” in Proceedings of the 19th European conference on Recent
Advances in the Message Passing Interface, ser. EuroMPI’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 193–203.

[7] R. Butler, W. Gropp, and E. Lusk, “A scalable process-management
environment for parallel programs,” in In Euro PVM/MPI. Springer-
Verlag, 2000, pp. 168–175.

[8] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, J. Krishna, E. Lusk,
and R. Thakur, “PMI: A scalable parallel process-management interface
for extreme-scale systems,” in Proceedings of the 17th European MPI
users’ group meeting conference on Recent advances in the message
passing interface, ser. EuroMPI’10. Berlin, Heidelberg: Springer-
Verlag, 2010, pp. 31–41.

[9] W. Gropp and E. Lusk, “Sowing MPICH: A case study in the dissem-
ination of a portable environment for parallel scientific computing,”
The International Journal of Supercomputer Applications and High
Performance Computing, vol. 11, no. 2, pp. 103–114, Summer 1997.

[10] R. H. Castain, T. S. Woodall, D. J. Daniel, J. M. Squyres, B. Barrett,
and G. E. Fagg, “The Open Run-Time Environment (OpenRTE): A
transparent multi-cluster environment for high-performance computing,”
in Proceedings, 12th European PVM/MPI Users’ Group Meeting,
Sorrento, Italy, September 2005.

[11] D. Buntinas, G. Bosilca, R. L. Graham, G. Vallée, and G. R. Watson,
“A scalable tools communications infrastructure,” in Proceedings of the
2008 22nd International Symposium on High Performance Computing
Systems and Applications, ser. HPCS’08. IEEE Computer Society,
2008, pp. 33–39.

[12] M. A. Jette, A. B. Yoo, and M. Grondona, “SLURM: Simple Linux
Utility for Resource Management,” in Job Scheduling Strategies for
Parallel Processing in Lecture Notes in Computer Science, vol. 2862.
Springer-Verlag, 200, pp. 44–60.


