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Abstract | System | #Cores | MTBF/l | Outage source |
. . . ASCIQ 8,192 6.5 hrs Storage, CPU
As the number of cores in high-performance computing —asciwhite 8.192 20 hrs Storage, CPU
environments keeps increasing, faults are becoming com- PSC Lemieux 3,016 6.5 hrs
mon place. Checkpointing addresses such faults but cap- Google 15,000 | 20 reboots/day| Storage, memory|
tures full process images even though only a subset of the JaQuar@ORNL | 23416 37.5hrs | Storage, memory,

process image changes between checkpoints.
We have designed a high-performance hybrid disk-based
full/incremental checkpointing technique for MPI tasks to

capture only data changed since the last checkpoint. Our |, q,ch systems, frequently deployed checkpoint/restart
implementation integrates new BLCR and LAM/MPI féa- /Ry mechanisms periodically checkpoint the entire pro-

tures that c;omplement traditional full c.heclfpoints. This cess image of all MPI tasks. The wall-clock time of a 100-
results in significantly reduced checkpoint sizes and OVer-pour job could well increase to 251 hours due to the C/R
heads with only moderate increases in restart overhead. Af- o -haaq of contemporary fault tolerant techniques imply-

ter accounting f_or co_st :_;md savings, penefits due to incre—ing that 60% of cycles are spent on C/R alone [26]. How-
mental checkpoints significantly outweigh the loss on resta ever, only a subset of the process image changes between

operatiops. ) ) checkpoints. In particular, large matrices that are ondydre
Experiments in a cluster with the NAS Parallel Bench- but never written. which are common in HPC codes. do
mark suite and mpiBLAST indicate that savings due 10 ot have to be checkpointed repeatedly. Also, coordinated
replacing full checkpomts with incremental ones average checkpointing for MPI jobs, which is commonly deployed,
16.64 seconds while restore overhead amounts 10 Justqires all the MPI tasks to save their checkpoint files at

1.17 seconds. These savings increase with the freqUENCy,q same time, which leads to extremely high 1/0 bandwidth
of incremental checkpoints. Overall, our novel hybrid demand.

full/incremental checkpointing is superior to prior non-
hybrid techniques.

Table 1: Reliability of HPC Clusters

Contributions: This paper contributes thiirst incre-
mental checkpointing mechanism for MPI tasks that is
transparently integrated into an MPI environment. In
1 Introduction contrast, prior solutions only operatedsimgle procesgn-
vironments [13, 16, 18, 38] or used hash-based blocks and

Recent progress in high-performance computing (HPC) . o . .
has resulted in remarkable Terascale systems with 1O,OOO§equIrEOI aiew APIto indicate when to checkpointand drain

o even 100,000 ofprocessing cores. At suh arge cound” 108 essagemliTpecadof b oo )
of cores, faults are becoming common place. Reliabil- P ' P

ity data of contemporary systems illustrates that the meanplementary to full checkpoints to capture only data changed

. . . o since the last checkpoint. The implementation, while re-
time between failures (MTBF) / interrupts (MTBI) is in the . . \

range of 6.5-40 hours(depen)ding on Fhe (maturi)ty / age Ofallzed over LAM (Local Area Multicomputer)/MPI's C/R
the installation [17]. The most common causes of failure support [31] through Berkeley Labs C/R (BLCR) [11], is

. in its mechanism licabl ny pr -migration so-
are processor, memory and storage errors / failures. Ta- ts mechanisms applicable to any process-migration so

ble 1 presents an excerpt from a Department of Energylunon’e'g’ the OpenMPI FT mechanisms [19, 20]. BLCR

(DOE) study that summarizes the reliability of severalestat IS an open source, sy§tem-level b |m_plementat|9q Inte-

L . grated with LAM/MPI via a callback function. The original
of-the-art supercomputers and distributed computing SYS | AM/MPI+BLCR combination [30] only provides full C/R
tems [17, 21]. When extrapolating for current systems in . yp

. mechanisms.
such a context, the MTBF for peta-scale systems is pre- Thi tribut hvbrid fulli tal C/R
dicted to be as short as 1.25 hours [26]. IS paper contributes a hybrid fufiincremental LIk So-
lution to significantly reduce the size of the checkpoint file

*This work was supported in part by NSF grants CCR-0237570-(CA  and the overhead of the checkpoint operations. Besides the

REER), CNS-0410203, CCF-0429653 and DOE DE-FG02-08ERR583 . . P 0
The research at ORNL was supported by Office of Advanced Siien original nodes allocated to an MPI job, it assumes the avalil

Computing Research and DOE DE-AC05-000R22725 with UTeait ability of spare nodes Where processes (MPI tasks) may be
LLC. relocated after a node failure. The paper further reduees th
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overhead of the restart operation due to roll-back afteenod e Tt SR e e e
failures,i.e., restoration from full/incremental checkpoints a4
on spare nodes, which only moderately increases the restart e B S ‘
cost relative to a restore from a single, full checkpointef e E>‘”k”¢ -
accounting for cost and savingsvings due to incremen- v ]

tal checkpoints significantly outweigh the loss on restart "

operations for over novel hybrid approach. - ¥ U'L@_%ﬂ_ J
We conducted a set of experiments on an 18-node (@0 FulCR

dual-processor (each dual core) Opteron cluster. We as-

sessed the viability of our approach using the NAS (NASA Fig. 1: Hybrid Full/incremental C/R Mechanism vs. Full C/R

Advanced Supercomputing) Parallel Benchmark suite and

no| ntf n2

PLLN B
S

mpiBLAST. Experimental results show that the overhead of nodes

our hybrid full/incremental C/R mechanism is significantly no n2
lower than that of the original C/R mechanism relying on

full checkpoints. More specifically, experimental results

indicate that the cost saved by replacing three full check-
points with three incremental checkpoints is 16.64 seconds
while the restore overhead amounts to just 1.17 for an over-
all savings of 15.47 seconds on average for the NAS Parallel

Benchmark suite and mpiBLAST. The potential of savings @ arain in-fight data

due to our hybrid incremental/full C/R technique should P 2pp @Ma”p

even be higher in practice as (1) much higher ratios than ) process incr. chkp o
just 1/3 for full/incremental checkpoints may be employed storage
and (2) the amount of lost work would be further reduced if @ @app @@

more frequent, lighter weight checkpoints were employed.

Moreover, our approach can be easily integrated with other ) restore in-fight data} resume normal operaion
techniques, such as job-pause and migration mechanisms

[34, 35] to avoid requeuing overhead by letting the sched-
uled job tolerate faults so that it can continue executirtg wi Fig. 2: Incremental Checkpoint at LAM/MPI
spare nodes.

The paper is structured as follows. Section 2 presents the
design of our hybrid full/incremental C/R mechanism. Sec- employ filtering of “dirty” pages at the memory manage-
tion 3 identifies and describes the implementation details. ment level,i.e.,, memory pages modified (written to) since
Subsequently, the experimental framework is detailed andthe last checkpoint, which are utilized at node failures to
measurements for our experiments are presented in Sectionestart from the composition of full and incremental check-
4 and 5, respectively. Our contributions are contrasted wit points. Each component of our hybrid C/R mechanism is
prior work in Section 6. The work is then summarized in detailed next.

Section 7.
2.1 Scheduler

2 Design We designed a decentralized scheduler, which can be de-

This section presents an overview of the design of the hy-ployed as a stand-alone component or as an integral pro-
brid full/incremental C/R mechanism with LAM/MPI and ~cess of an MPI daemon, such as the LAM daemon (lamd).
BLCR. We view incremental Checkpoints as Comp|emen- The scheduler will issue the full or incremental CheCprint
tary to full checkpoints in the following sense. Evary commands based on user-configured intervals or the system
th checkpoint will be a full checkpoint to capture an ap- €nvironment, such as the execution time of the MPI job,
plication without prior checkpoint data while any check- storage constraints for checkpoint files and the overhead of
points in between are incremental, as illustrated in Fig- Preceding checkpoints.
ure 1(b). Such process-based incremental checkpointing Upon a node failure, the scheduler initiates a “job pause”
reduces checkpoint bandwidth and storage space require€chanism in a coordinated manner that effectively freezes
ments, and it leads to a lower rate of full checkpoints. all MPI tasks on functional nodes and migrates processes of

In the following, we first discuss the schedule of the failed nodes [34]. All nodes, functional (paused ones) and
full/incremental C/R. We then discuss system support for Migration targets (replaced failed ones), are restartem fr
incremental checkpoints at two levels. First, the synchro- the last full plus: incremental checkpoints, as explained in
nization and coordination operations (such as the in-flight Section 2.5.
message drainage among all the MPI tasks to reach a consisz— >
tent global state) at the job level are detailed. Second; dir
pages and related meta-data image information are saved Incremental Checkpointing at the Job Level is performed
at the process/MPI task level, as depicted in Figure 3. Wein a sequence of steps depicted in Figure 2 and described in

Incremental Checkpointing at the Job Level



the following.

Step 1: Incremental Checkpoint Trigger: When the
scheduler decides to engage in an incremental checkpoint, i
issues a corresponding command tort@runprocess, the
initial LAM/MPI process at job invocation. This process, in
turn, broadcasts the command to all MPI tasks.

Step 2: In-flight Message Drainage:Before we stop

any process and save the remaining dirty pages and the cor-

responding process state in checkpoint files, all MPI tasks
coordinate a consistent global state equivalent to anriater
barrier. Based on our LAM/MPI+BLCR design, message
passing is handled at the MPI level while the process-level
BLCR mechanism is not aware of messaging at all. Hence,
we employ LAM/MPI’s job-centric interaction mechanism
for the respective MPI tasks to clear in-flight data in the MPI
communication channels.

Step 3: Process Incremental CheckpointOnce all the
MPI tasks (processes) reach a globally consistent state, al
the MPI tasks perform the process-level incremental check-
point operations independently, as discussed in Sectin 2.

Step 4: Messages Restoration and Job Continuation:

Once the process-level incremental checkpoint has been

committed, drained in-flight messages are restored, and al

processes resume execution from their point of suspension.

2.3 Incremental Checkpointing at the Process

Level

Incremental checkpointing of MPI tasks (step 3 in Figure
2) is performed at the process level, which is shown in detail
in Figure 3. Compared to a full checkpoint, the incremental
variant lowers the checkpoint overhead by saving only those
memory pages modified since the last (full or incremental)
checkpoint. This is accomplished via our BLCR enhance-
ments by activating a handler thread (on right-hand side of.
Figure 3) that signals compute threads to engage in the in-

cremental checkpoint. One of these threads subsequently

saves modified pages before participating in a barrier with
the other threads, as further detailed in Section 3.2.
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Fig. 3: BLCR with Incremental Checkpointin Bold Frame

A set of three files serve as storage abstraction for a
checkpoint snapshot, as depicted in Figure 4:

1. Checkpoint file acontains the memorpage content
i.e,, the data of only those memory pages modified
since the last checkpoint.

2. Checkpoint file lstores memorypage addresses.e.,
address and offset of the saved memory pages for each
entry infile a.

3. Checkpoint file covers othemeta informatione.g,
linkage of threads, register snapshots, and signal infor-
mation pertinent to each thread within a checkpointed

process / MPI task.

incr incr incr
full chkpt chkpt 1 chkpt 2 chkpt 3

y |
chkpt file b | A0 || AL || A2 || A3 || A4 [[ A2 || A4 |[ A3 |[ A4 |[ AL |[ AS |[ A6
| 00 || O1 |02 ] 03 || 04 |[ 05 06 |[ O7 || 08 || 09 || O10

Ol11

Pi: content of memory page i  Ai: address of memory page i
Oi: offset in file a of the corresponding memory page

Fig. 4: Structure of Checkpoint Files

File aandfile bmaintain their data in a log-based append
mode for successive incremental checkpoints. The last full
and subsequent incremental checkpoints will only be dis-
charged (marked for potential removal) once the next full
checkpoint has been committed. Their availability is re-
quired for the potential restart up until a superseding khec
point is written to stable storage. In contrast, only thegat
version offile cis maintained since all the latest information
is saved as one meta-data record, which is sufficient for the
next restart.

In addition, memory pages savedfife a by an older
checkpoint can be discharged once they are captured in a
subsequent checkpoint due to page modifications (writes)
since the last checkpoint. For example, in Figure 4, mem-
ory page 4 saved by the full checkpoint can be discharged
when the first incremental checkpoint saves the same page.
Later, the same page saved by the first incremental check-
point can be discharged when it is saved by the second in-
cremental checkpoint. In our on-going work, we are devel-
oping a garbage collection thread for this purpose. Similar
to segment cleaning in log-structured file systems [28], the
file is divided into segments (each of equal size as they rep-
resent memory pages) that are written sequentially. A sepa-
rate garbage collection thread tracks these segmentswithi
the file, removes old segments (marked appropriately) from
the end and puts new checkpointed memory data into the
next segment. As a result, the file morphs into a large cir-
cular buffer as the writer thread adds new segments to the
front and the cleaner thread removes old segments from the
end toward the front (and then wraps around). Meanwhile,
checkpoinfile bis updated with the new offset information
relative tofile a.



2.4 Modified Memory Page Management checkpoint commands to each MPI tasks. At the LAM/MPI
. . level, we also drain the in-flight data and reach to a consis-
We utilize a Linux kernel-level memory management_tem internal state before processes launch the actuakchec
module that has bee_n_ extended by a page—table_dwty bltpoint operation (see step 2 in Figure 2). We then restore the
scheme to track modified pages between checkpoints [35]'in—flight data and resume normal operation after the check-

This is accomplished by duplicating the dirty bit of the : : fth h | 4i
page-table entry (PTE) and extending kernel-level fumgtio E%Etré)g)eratlon of the process has completed (see step 4 in

that access the PTE dirty bit so that the duplicate bit is set,

which incurs negligible overhead (see [35] for details). 3.2 Full/incremental Checkpointing at the Pro-

25 MPI Job Restart from Full+Incremental cess Level

Checkpoints We integrated several new BLCR features to extend its

Upon a node failure, the scheduler coordinates the restarPT0¢€Ss-level checkpointing facilities, including theane

operation on both the functional nodes and the spare nodescommandscr_full_checkpointand cr.incr_checkpointto
First, the process ahpirunis restarted, which, in turn, is- trigger full and incremental checkpoints at the processllev

sues the restart command to all the nodes for the MPI tasks Within BLCR. Both of these commands write their respec-

Thereafter, recovery commences on each node by restor;ive portio.n of the process snapshot to one of the three files
ing the last incremental checkpoint image, followed by (S€€ Section 2.and Figure 4). S .

the memory pages from the preceding incremental check- Figure 3 depl_cts_the steps involved in issuing an incre-
points in reverse sequence up to the pages from the lasfnental checkpoint in reference to BLCR. Our focus is on
full checkpoint image, as depicted in Figure 5. The scan the enhancements to BLCR (large dashed box). In the fig-
over all incremental checkpoints and the last full check- U time flows from top to bottom, and the processes and
point allows the recovery of the last stored version of a page tréads involved in the checkpoint are placed from right to
i.e, the content of any page only needs to be written onceleft. Ac’luvmes performed in the kgrnel are s'urrounded by
for fast restart. After process-level restart has been com-dottéd lines. A callback thread (right side) is spawned as
pleted, drained in-flight messages are restored, and all thén€ application registers a threaded callback and blocks in
processes resume execution from their point of suspensiont® kermnel until a checkpoint has been committed. When
Furthermore, some pages saved in preceding checkpoint§Pirun invokes the newly developedr.incr_checkpoint
may be invalid (unmapped) in subsequent ones and needommand extensions to BLCR, |F provides thg process id
not be restored. The latest memory mapping information @ n argument. In response, trencr.checkpoinmech-

saved incheckpoint file @s also used for this purpose. anism issues aioctl _caII, thereby re_zsuming the callback
et incr iner thread that was previously blocked in the kernel. After the
full chkpt chkpt1 chkpt2 chkpt3 callback thread invokes the individual callback for each of

|_ et - hl H H
Chkmmea:— the other threads, it reenters the kernel and sends a signal

———————————————————— to each thread. These threads, in response, engage in exe-

cuting the callback signal handler and then enter the kernel
through anotheioctl call.

Fig. 5: Fast Restart from Full/Incremental Checkpoints Once in the kernel, the first thread saves the dirty mem-
ory pages modified since the last checkpoint. Then, threads
take turns saving their register and signal informatiomto t
checkpoint files. After a final barrier, the process exits the

Our hybrid full/incremental checkpoint/restart mecha- kernel and enters user space, at which point the checkpoint
nism is currently implemented with LAM/MPI and BLCR. Mechanism has completed.
The overall design and implementation allows adaptation ~ The commandr_full_checkpoinperforms similar work,
of this solution to arbitrary MPI implementations, such €Xxcept that once the kernel is entered, the first thread saves
as MPICH and OpenMPI. Next, we present the imple- all the non-empty memory pages rather than only the dirty
mentation details of the full/incremental C/R mechanism, ONes.

including the MPI-level communication/coordination real

ized within LAM/MPI and the process-level fundamental 3-3 Restart from Full+Incremental Checkpoints
capabilities of BLCR. at Job and Process Levels

Pi: content of memory page i restart

3 Implementation Issues

A novel commandam_fullplusincr_restart has been de-
veloped to perform the restart work at the job level with
LAM/MPI. Yet another commandgcr_fullplusincr_restart,

We developed new commantsm_full_checkpointand has been devised to support the restart work at the process
lam_incr_checkpointto issue full and incremental check- level within BLCR. In concert, the two commands imple-
point commands, respectively. The decentralized sched-ment the restart from the three checkpoint files and resume
uler relays these commands to timpirun process of the  the normal execution of the MPI job as discussed in Section
MPI job. Subsequentlynpirunbroadcasts full/incremental 2.

3.1 Full/incremental Checkpointing at the Job
Level



4 EX pe rl me ntal F ramewo rk ‘ O Execution time M Full checkpoint overhead
100%

Experiments were conducted on a dedicated Linux clus- 99%
ter comprised of 18 compute nodes, each equipped with two 98%
AMD Opteron-265 processors (each dual core) and 2 GB 7%
of memory. The nodes are interconnected by two networks, ZiZ
both with 1 Gbps Ethernet. The OS used is Fedora Core 5 04%
Linux x86.64 with our dirty bit patch as described in Sec- .,
tion 2. We extended LAM/MPI and BLCR with our hybrid 954
full/incremental C/R mechanism of this platform.

For all following experiments we use the MPI version
of the NPB suite [37] (version 3.3) as well as mpiBLAST
[1]. NPB is a suite of programs widely used to evaluate the
performance of parallel system, while the latter is a patall
implementation of NCBI BLAST, which splits a database
into fragments and distributes the query tasks to workers by
query segmentation before the BLAST search is performed
in parallel.

BT9
BT.16
CG8
CG.16
LUS
LU.16

MG.8 |
MG.16
SP.Y
SP.16

mpiBLAST .4
mpiBLAST.8
mpiBLAST.16

Fig. 6: Full Checkpoint Overhead of NPB Class D and mpi-
BLAST

the ratio is below 10% for most NPB benchmarks with Class
. C data inputs. Figure 6 depicts the measured overhead for
5 Experimental Results single full checkpointing relative to the base executiomti

Experiments were conducted to assess (a) overheads a&f NPB with Class D data inputs and mpiBLAST (without
sociated with the full and incremental checkpoints, (b) ful Checkpointing). The ratio is below 1%, except for MG, as
and incremental checkpoint file size and memory check- discussed in the following.
pointed (which is the main source of the checkpointing MG has a larger checkpoint overhead (large checkpoint
overhead), (c) restart overheads associated with therfdll a  file), but the ratio is skewed due to a short overall execu-
incremental checkpoints, and (d) the relationship betweention time (see Figure 8(a)). In practice, with more realis-
checkpoint interval and checkpoint overhead. tic and longer checkpoint intervals, a checkpoint would not

Out of the NPB suite, the BT, CG, FT, LU and SP bench- be necessitated within the application’s execution. kste
marks were exposed to class C data inputs running on 4, ghe application would have been restarted from scratch. For
or 9 and 16 nodes, and to class D data inputs on 8 or 9 andonger runs with larger inputs of MG, the fraction of check-
16 nodes. Some NAS benchmarks have 2D, others have 30P0int/migration overhead would have been much smaller.
layouts for2? or 32 nodes, respectively. The NAS bench-  Figures 7(b), 8(b), 9(b) and 10(b) show that the over-
mark EP is exposed to class C, D and E data inputs runnind'lead of incremental Checkpointing is smaller than that of
on 4, 8 and 16 nodes. All the other NAS benchmarks Werer” checkpointing, so the overhead of incremental check-
not suitable for our experiments since they execute for too Pointing is less significant. Hence, a hybrid full/incrertadn
short a period to be periodically checkpointed, such asdS, a checkpointing mechanism reduces runtime overhead com-
depicted in Figure 7(a), or they have excessive memory re-pared to full checkpointing throughout, i.e., under vagyin
quirement, such as the benchmarks with class D data input§ilumber of nodes and input sizes.
on 4 nodes. o . .

Since the version of mpiBLAST we used assigns one 2-2 Checkpointing File Size

process as the master and another to perform file output, Besides overhead due to checkpointing, we assessed the

Fhe nqmber of actual worker Processes performing par"""Eﬂactual footprint of the checkpointing file. Figures 7(c))8(
input is the total process number minus two. Each workerg(c) and 10(c) depict the size of the checkpoint files for

process reads several da_tabase fragnjgnts. With our EXone process of each MPI application. Writing many files of
periments, we set the mpiBLAST-specific argumarge-

. ) . such size to shared storage synchronously may be feasible
virtual-frags, which enables caching of database fragments high-bandwidth parallel file systems. In the absence of

in memory (rather than local storage) for quicker searches. g icient handwidth for simultaneous writes, we provide a

5.1 Checkpointing Overhead multi-stage solution Where we fi_rst chgckpoint to local stor
age. After local checkpointing, files will be asynchrongusl
The first set of experiments assesses the overhead incopied to shared storage, an activity governed by the sched-
curred due to one full or incremental checkpoint. Figures uler. This copy operation can be staggered (again governed
7(a), 8(a), 9(a) and 10(a) depict the base execution time of ayy the scheduler) between nodes. Upon failure, a spare node
job (benchmark) without checkpointing while Figures 7(b), restores data from the shared file system while the remain-

8(b), 9(b) and 10(b) depict the checkpoint overhead. As ing nodes roll back using the checkpoint file on local stor-
these results show, the checkpoint overhead is uniformlyage, which results in less network traffic.

small relative to the overall execution time, even for adarg Overall, the experiments show that:
number of nodes. Prior work [34] already compared the
overhead of full checkpointing with the base execution,and 1. the overhead of full/incremental checkpointing of the
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Fig. 8: Evaluation with NPB Class D

MPI job is largely proportional to the size of the check-
point file;

. the overhead of full checkpointing is nearly the same
at any time of the execution of the job;

. the overhead of incremental checkpointing is nearly
the same at any interval; and

than that of full checkpointing (except some cases of
EP, which are lower than 0.45 seconds, which is ex-
cessively short. If required at this sort rate, one can
employ full checkpointing only).

The first observation indicates that the ratio of commu-

. the overhead of incremental checkpointing is lower nication overhead to computation overhead for C/R of the
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Fig. 10: Evaluation with mpiBLAST

MPI job is relatively low. Since checkpoint files are, on av- ible enough to deploy our kernel modifications, new BLCR
erage, large, the time spent on storing/restoring checkpoi features and LAM/MPI enhancements, such larger scale ex-
to/from disk accounts for most of the measured overhead.periments cannot currently be realized, neither at Nationa
This overhead is further reduced by the potential savingsLabs nor at larger-scale clusters within universities wher
through incremental checkpointing. we have access to resources.

For full/incremental checkpointing of EP (Figure 9(b)), The second observation about full checkpoint overheads
incremental checkpointing of CG with Class C data inputs above indicated that the size of the full checkpoint file re-
(Figure 7(b)) and incremental checkpointing of mpiBLAST mains stable during job execution. The benchmarks codes
(Figure 10(b)), the footprint of the checkpoint file is small do not allocate or free heap memory dynamically within
(smaller than 13MB), which results in a relatively small timesteps of execution; instead, all allocation is perfedm
overhead. Thus, the checkpoint overhead mainly reflectsduringinitialization, which is typical for most parallebdes
the variance of the communication overhead inherent to the(éxcept for adaptive codes [36]).
benchmark, which increases with the node count. However, The third observation is obtained by measuring the
the overall checkpoint overhead for these cases is smallecheckpoint file size with different checkpoint intervals fo
than 1 second. Hence, communication overhead of the apincremental checkpointing, i.e., with intervals of 30, 80,
plications did not significantly contribute to the overhead 120, 150 and 180 seconds for NPB Class C and intervals
interfere with checkpointing. This indicates a high poten- of 2, 4, 6, 8, 10 and 12 minutes for NPB Class D and mpi-
tial of our hybrid full/incremental checkpointing solutio =~ BLAST.
to scale to larger clusters, and we have analyzed our data Thus, we can assume the time spent on checkpointing is
structures and algorithms to assure suitability for sdktgb constant. This assumption is critical to determine the-opti
Due to a lack of large-scale experimentation platforms flex- mal full/incremental checkpoint frequency.
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The fourth observation verifies the superiority and jus-
tifies the deployment of our hybrid full/incremental check-

——CG.D

pointing mechanism. 100 | // i
_ mpiBLAST

5.3 Restart Overhead /’/ e
—=FT.C

~-BT.C

Figures 7(d), 8(d) and 10(d) compare the restart over- : e
head of our hybrid full/incremental solution from one full e
checkpoint plus three incremental checkpoints with that of 1 ¢ ==
the original solution restarting from one full checkpoint.
The results indicate that the wall clock time for restart |
from full plus three incremental checkpoints exceeds that 1 2 3 4 5 6
Of restart from one fu” ChecprInt by 0_253% dependlng Number of incremental Checkpoinls between two full checkpoinls
on the application, and it is 68% larger (1.17seconds) on _ ) ) ) )
average for all cases. The largest additional cost of 253%E?N1Plé ::&";%g;g%:'g;ﬁggggemema' C/R Mechanism
(10.6 seconds) was observed for BT under class D inputs for P
16 nodes due to its comparatively large memory footprint
of the incremental checkpointing. Yet, this overhead is not
on the critical path as failures occur significantly less fre Wheres,, is the saving withn incremental checkpoints be-
quently than periodic checkpoints., our hybrid approach ~ tween two full checkpointg); is the full checkpoint over-
reduces the cost along the critical path of checkpointing. head,0; is the incremental checkpoint overhedy, ., is
For mpiBLAST and CG, the footprint of incremental check- the overhead of restarting from fuli+incremental check-
pointing is comparatively so small that the overhead of points andR; is the overhead of restarting from one full
restarting from full plus three incremental checkpoints is checkpoint. For mpiBLAST and CG, we may even perform
almost the same as that of restarting from one full check-only incremental checkpointing after the first full check-
point. Yet, the time saved by three incremental checkpointspPoint is captured initially since the footprint of incremen
over three full checkpoints is 16.64 seconds on average fortal checkpoints is so small that we will not run out of
all cases. Even for BT under class D inputs for 16 nodesdrive space at all (or, at least, for a very long time). Not
(which has the largest restart cost loss ratio), the saging i only should a node failure be the exception over the set
23.38 seconds while the loss is 10.6 seconds. We can furof all nodes, but the lower overhead of a single incremen-
ther extend the benefit by increasing the incremental checktal checkpoint provides opportunities to increase check-
pointing count between two full checkpoints. point frequencies compared to an application running with

We can also assess the accumulated checkpoint file sizéull checkpoints only. Such shorter incremental check-
of one full checkpoint plus three incremental checkpoints, Point frequencies reduce the amount of work lost when a
which is 185% larger than that of one full checkpoint. How- restart is necessitated by a node failure. Hence, the hy-
ever, as just discussed, the overhead of restarting from ondrid full/incremental checkpointing mechanism effeciyve
full plus three incremental checkpoint is only 68% larger. reduces the overall overhead relative to C/R.

This is due to the following facts: Table 2 presents detailed measurements on the savings
of incremental checkpointing, the overhead of restart from
full plus incremental checkpoints, the relationship betwe
the checkpoint file size and restart overhead, and the over-
all benefit from the hybrid full/incremental C/R mechanism.
The benchmarks are sorted by the benefit. The table shows
that (1) the cost caused by restart from one full plus one in-
cremental checkpoints (which 8,1, - Ry) is low, com-
5.4 Benefit of Hybrid Full/Incremental C/R pared to the savings by replacing full checkpoints with in-
Mechanism cremental ones (which ©; - O;), and can be ignored for
most of the benchmarks; (2) the restart cost is nearly pro-
portional to the file size (except that some pages are check-

tal ones minus the loss on the restore overhead) for dil‘fer—pomted twice at both full and incremental checkpoints but
later only restored once and thus lead to no extra cost);

ent number of incremental checkpoints between any adja-(g) for all the benchmarks, we can benefit from the hybrid

cent full ones. Savings increase proportional to the AUM- ¢, li/incremental C/R mechanism, and the performance im-

_ber of mcrem_enta_l checkpoints (as the y axis n the figure provement depends on the memory access characteristics of
is on a logarithmic base), but the amount of incremental the application

checkpoints is still limited by stable storage capacitytifwi ) ) .
out segment-style cleanup). The results are calculated by Naksinehaboomt al. provide a model that aims at re-

i

1. a page saved by different checkpoints is only restored
once;

2. file reading for restarting is much faster than file writ-
ing for checkpointing; and

3. some pages saved in preceding checkpoints may be in
valid and need not be restored at a later checkpoint.

Figure 11 depicts sensitivity results of the overall sasing
(the cost saved by replacing full checkpoints with incremen

using the following formulae: ducing full checkpqint overhead by performing a set of in-
cremental checkpoints between two consecutive full check-
Sp=nx (05 —0;) — (Rf4n, — Ry) points [24]. They further develop a method to determine the



[ Benchmarks [ CG.D| SP.D | BT.D | mpiBLAST | LUD [CG.C| FT.C | BT.C | MG.D |LUC [ SPC]

Savings of Oy - O;) | 36.20 6.73 7.79 3.34 2.81 1.85 1.69 1.22 1.51 0.38 | 0.28
Restart overhead
of 0.03 1.28 3.45 0.01 0.59 0.01 0.20 -0.02 0.81 0.02 | 0.04
(Ry41, - Ry)

File increases
for 1 incr. chkpt 17.26 | 1151.88| 1429.14 10.45 561.46| 2.10 | 384.41| 100.67| 1205.23| 41.09 | 80.98
[MB]
Benefit of
hybrid C/R (51) 36.17 5.45 4.34 3.33 2.21 1.84 1.50 1.25 0.70 0.36 | 0.24

Table 2: Savings by Incremental Checkpoint vs. Overhead on &start

optimal number of incremental checkpoints between full by checkpointing only the modified pages and at a lower
checkpoints. They obtain rate than required for full checkpoints.

. {(1—u>x0f_1w

D <3 Incremental Checkpointing: Recent studies focus on in-

cremental checkpointing [13, 16, 18]. TICK (Transpar-
wherem is the number of incremental checkpoints between ent Incremental Checkpointer at Kernel Level) [13] is a
two consecutive full checkpoint,is the incremental check- — system-level checkpointer implemented as a kernel thread.
point overhead ratig = O;/Oy), P; is the probability that It supports incremental and full checkpoints. However, it
a failure will occur after the second full checkpoint and be- checkpoints only sequential applications running on a sin-
fore the next incremental checkpoint, ani$ additional re- gle process that do not use inter-process communication or
covery cost per incremental checkpoint. With the data from dynamically loaded shared librariesn contrast, our so-

Table 2, we can determine lution transparently supports incremental checkpoints fo
an entire MPI job with all its processes. Pickdil6] is
m — [9-92 _ 1} a page-level incremental checkpointing facility. It prdes

P; space-efficient techniques for automatically removing use

less checkpoints aiming to minimizing the use of disk space
that differ from our garbage collection thread technique.
Yi et al. [38] develop an adaptive page-level incremental
checkpointing facility based on the dirty page count as a
threshold heuristic to determine whether to checkpoint now
or later, a feature complementary to our work that we could
adopt within our scheduler component. However, Pickpt
6 Related Work and Yi's adap_tive scheme are const_rained to C/R of a s_in—
gle process, just as TICK was, while we cover an entire
Checkpoint/Restart: C/R techniques for MPI jobs fre- MPI job with all its processes and threads within processes.
guently deployed in HPC environments can be divided into Agarwal et al. [1] provide a different adaptive incremen-
two categories: coordinated (LAM/MPI+BLCR [30, 11], tal checkpointing mechanism to reduce the checkpoint file
CoCheck [32], etc.) and uncoordinated (MPICH-V [3, 4]). size by using a secure hash function to uniquely identify
Coordinated techniques commonly rely on a combination changed blocks in memory. Their solution not only appears
of OS support to checkpoint a process imagegy( via to be specific to IBM’s compute node kernel on BG/L, it
the BLCR Linux module [11]) or user-level runtime li- also requires hashes for each memory page to be computed,
brary support. Collective communication among MPI tasks which tends to be more costly than OS-level dirty-bit sup-
is used for the coordinated checkpoint negotiation [30]. port as caches are thrashed when each memory location of
Uncoordinated C/R techniques generally rely on logging a page has to be read in their approach.
messages and possibly their temporal ordering for asyn- A prerequisite of incremental checkpointing is the avail-
chronous non-coordinated checkpointiregg, MPICH-V ability of a mechanism to track modified pages during each
[3, 4] that uses pessimistic message logging. The frame-checkpoint. Two fundamentally different approaches may
work of OpenMPI [2, 19] is designed to allow both coordi- be employed, namely page protection mechanisms or page-
nated and uncoordinated types of protocols. However, con-table dirty bits. Different implementation variants budd
ventional C/R techniques checkpoint the entire process im-these schemes. One is the bookkeeping and saving scheme
age leading to high checkpoint overhead, heavy I/O band-that, based on the dirty bit scheme, copies pages into a
width requirements and considerable hard drive pressurepuffer [13]. Another solution is to exploit page write prote
even though only a subset of the process image of alltion, such as irPickpt[16], to save only modified pages as
MPI tasks changes between checkpoints. With our hybrida new checkpoint. The page protection scheme has certain
full/incremental C/R mechanism, we mitigate the situation draw-backs. Some address ranges, such as the stack, can

. Since0 < P; < 1, a lower bound fom is 8.92, which in-
dicates the potential for even more significant savings than
just those depicted in Figure 11.

Overall, the overhead of the hybrid full/incremental C/R
mechanism is significantly lower than the original periodi-
cal full C/R mechanism.



only be write protected if an alternate signal stack is em- full/incremental C/R model outperforms full checkpoirgin
ployed, which adds calling overhead and increases cachd-urthermore, our reverse scanning restart mechanism is su-
pressure. Furthermore, the overhead of user-level exaepti perior to the one used in their model.

handlers is much higher than kernel-level dirty-bit shadow
ing. Thus, we selected the dirty bit scheme in our design,
yet in our own implementation within the Linux kern€@ur
approach is unigue among this prior work in its ability to . , ) ,
capture and restore aentire MPI job with all its tasks, This Work.contnputes a novel h.ybrld fuII/|nc.remer.1tgl
including all relevant process information and OS kernel- /R mechanism with a concrete implementation within

specific dataHence, our scheme is more general than lan- FAM/MPI and BLCR with the following features: (1) It
guage specific solutions (as in Charm++), yet lighter weight Provides a dirty bit mechanism to track modified pages be-
than OS virtualization C/R techniques. tween incremental checkpoints; (2) only the subsehotl-

ified pages is appended to the checkpoint file together with
. . ] . . _ page metadata updates for incremental checkpoints; (3) in-
Reactive FT vs. Proactive FT: Besides reactive fault tol cremental checkpoints complement full checkpoints by re-

zir::fseséz-rs)é Ifr;?;g??e:]c:eti\%”r/gi]c::&in[t;; C2/7R ae(;hmr%l;i_ducing I/0 bandwidth and storage space requirements while
g F P allowing lower rates for full checkpoints; (4) a restarteaft

tive FT has recently become a hot research area. The fea-

" . .~ “a node failure requires a scan over all incremental check-
sibility of proactive FT has been demonstrated at the job _ . d the last full checkpoi f he |
scheduling level [25], within OS virtualization [33] and in POt and the last full checkpoint to recover from the last

Adaptive MPI [5, 6, 7] using a combination of (a) object stored version of a pagee., the content of any page only

virtualization techniques to migrate tasks and (b) causalneedS to be written to memory once for fast restart; (5)
: ques to mig . a decentralized scheduler coordinates the full/increadent
message logging [12] within the MPI runtime system of

L2 . . C/R mechanism among the MPI tasks. Results indicate that
Charm++ applications. Wanet al. [35] provide a live . .
o . oS . the performance of the hybrid full/incremental C/R mech-
migration mechanism which is coarser grained than the

. . anism is significantly lower than that of the original full
Charm++ approach as FT is provided at the process IeveI’C/R. For the NPB suite and mpiBLAST, the average sav-

it:ergbgnefﬂgad%sstélfiltltnogrsm\,c\),?icorf ;?s g’erogﬁzsf[hcg&tgl(i’u':gxg'ings due to replacing three full checkpoints with three in-
gop ptors, y cremental checkpoints is 16.64 seconds — at the cost of

ﬁzggeparxzz(ﬁ:(?y':;ilrlerl:z: ?on t];?elllt{:ﬁhpére?jllg\tgzi% 1\z(qét15re- only 1.17 segonds if arestart is required after a node failur

) S . ' ' *~ due to restoring one full plus three incremental checksoint
active FT is still a requirement for HPC systems, and our Hence, the overall saving amounts to 15.47 seconds. Even
solutio'n improves reactive FT, optionally complemented by [nore s’ignificant saving would be obtainéd if the rate éf in-
proactive support, at rgduced overhead due to Incrementacremental checkpoints between two full checkpoints was in-
process-level checkpoints for all MPI tasks. creased. Our hybrid approach can further be utilized to (1)

develop an optimal (or near-optimal) checkpoint placement

Checkpoint Interval Model:  Aiming at optimality for  gigorithm, which combines full and incremental checkpoint
checkpoint overhead and rollback time over a set of MPI gntions in order to reduce the overall runtime and applica-
jobs, several models have been developed to determine jobtion overhead: (2) create and assess applications with vary
specific intervals for full or incremental checkpoints. gon ing memory pressure to measure the tradeoff between full
[39] presented a checkpoint model and obtained a fixed 0p-anq incremental checkpoints and to provide heuristics ac-
timal checkpoint interval. Based on Youngs work, Daly cordingly; and (3) combine related job pause/live migratio
[8, 9] improved the model to an optimal checkpoint place- techniques[33, 34, 35] with incremental checkpoints te pro
ment from a first order to a higher order approximation. yige a reliable multiple-level fault tolerant frameworkath
Liu et al. provide a model for an optimal full C/R strat-  incurs lower overhead than previous schemes. Overall, our
egy toward minimizing rollback and checkpoint overheads hybrid full/incremental checkpointing approach is notyonl
[22]. Their scheme focuses on the fault tolerance challenge novel but also superior to prior non-hybrid techniques.
especially in a large-scale HPC system, by providing opti-
mal checkpoint placement techniques that are derived from
the actual system reliability. As we discussed in Section 5,
Naksinehabooat al. provide a model to perform a set ofin- Réferences
cremental checkpoints between two consecutive full check-
points [24] and a method to determine the optimal num- [
ber.of Inclrement.al CheCkpomtS be.tween. full checkpoints. parallel systems. IICS '04: Proceedings of the 18th annual
While their work is constrained to simulations based on log international conference on Supercompufinges 277—
data, our work focuses on the design and implementation of 286, New York, NY, USA, 2004. ACM.
process-level incremental C/R for MPI tasks. Their work 2] B, Barrett, J. M. Squyres, A. Lumsdaine, R. L. Graham, and

7 Conclusion

1] Saurabh Agarwal, Rahul Garg, Meeta S. Gupta, and Jose E.
Moreira. Adaptive incremental checkpointing for massivel

i_S complemen'tary in that their model could be Uti|i2(_9d to G. Bosilca. Analysis of the component architecture ovethea
fine-tune our incremental C/R rate. In fact, the majority in Open MPI. InEuropean PVM/MPI Users’ Group Meeting
of their results on analyzing failure data logs show that the Sorrento, Italy, September 2005.
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