
Hybrid Full/Incremental Checkpoint/Restart for MPI Jobs i n HPC
Environments ∗

Chao Wang1, Frank Mueller1, Christian Engelmann2, Stephen L. Scott2

1 Department of Computer Science, North Carolina State University, Raleigh, NC
2 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN

mueller@cs.ncsu.edu, phone: +1.919.515.7889, fax: +1.919.515.7896
Abstract

As the number of cores in high-performance computing
environments keeps increasing, faults are becoming com-
mon place. Checkpointing addresses such faults but cap-
tures full process images even though only a subset of the
process image changes between checkpoints.

We have designed a high-performance hybrid disk-based
full/incremental checkpointing technique for MPI tasks to
capture only data changed since the last checkpoint. Our
implementation integrates new BLCR and LAM/MPI fea-
tures that complement traditional full checkpoints. This
results in significantly reduced checkpoint sizes and over-
heads with only moderate increases in restart overhead. Af-
ter accounting for cost and savings, benefits due to incre-
mental checkpoints significantly outweigh the loss on restart
operations.

Experiments in a cluster with the NAS Parallel Bench-
mark suite and mpiBLAST indicate that savings due to
replacing full checkpoints with incremental ones average
16.64 seconds while restore overhead amounts to just
1.17 seconds. These savings increase with the frequency
of incremental checkpoints. Overall, our novel hybrid
full/incremental checkpointing is superior to prior non-
hybrid techniques.

1 Introduction

Recent progress in high-performance computing (HPC)
has resulted in remarkable Terascale systems with 10,000s
or even 100,000s of processing cores. At such large counts
of cores, faults are becoming common place. Reliabil-
ity data of contemporary systems illustrates that the mean
time between failures (MTBF) / interrupts (MTBI) is in the
range of 6.5-40 hours depending on the maturity / age of
the installation [17]. The most common causes of failure
are processor, memory and storage errors / failures. Ta-
ble 1 presents an excerpt from a Department of Energy
(DOE) study that summarizes the reliability of several state-
of-the-art supercomputers and distributed computing sys-
tems [17, 21]. When extrapolating for current systems in
such a context, the MTBF for peta-scale systems is pre-
dicted to be as short as 1.25 hours [26].

∗This work was supported in part by NSF grants CCR-0237570 (CA-
REER), CNS-0410203, CCF-0429653 and DOE DE-FG02-08ER25837.
The research at ORNL was supported by Office of Advanced Scientific
Computing Research and DOE DE-AC05-00OR22725 with UT-Battelle,
LLC.

System # Cores MTBF/I Outage source

ASCI Q 8,192 6.5 hrs Storage, CPU
ASCI White 8,192 40 hrs Storage, CPU

PSC Lemieux 3,016 6.5 hrs
Google 15,000 20 reboots/day Storage, memory

Jaguar@ORNL 23,416 37.5 hrs Storage, memory

Table 1: Reliability of HPC Clusters

In such systems, frequently deployed checkpoint/restart
(C/R) mechanisms periodically checkpoint the entire pro-
cess image of all MPI tasks. The wall-clock time of a 100-
hour job could well increase to 251 hours due to the C/R
overhead of contemporary fault tolerant techniques imply-
ing that 60% of cycles are spent on C/R alone [26]. How-
ever, only a subset of the process image changes between
checkpoints. In particular, large matrices that are only read
but never written, which are common in HPC codes, do
not have to be checkpointed repeatedly. Also, coordinated
checkpointing for MPI jobs, which is commonly deployed,
requires all the MPI tasks to save their checkpoint files at
the same time, which leads to extremely high I/O bandwidth
demand.

Contributions: This paper contributes thefirst incre-
mental checkpointing mechanism for MPI tasks that is
transparently integrated into an MPI environment . In
contrast, prior solutions only operated insingle processen-
vironments [13, 16, 18, 38] or used hash-based blocks and
required anew APIto indicate when to checkpoint and drain
in-flight messages [1] instead of our hardware assisted fully
transparent scheme. Our incremental checkpoints are com-
plementary to full checkpoints to capture only data changed
since the last checkpoint. The implementation, while re-
alized over LAM (Local Area Multicomputer)/MPI’s C/R
support [31] through Berkeley Labs C/R (BLCR) [11], is
in its mechanisms applicable to any process-migration so-
lution, e.g., the OpenMPI FT mechanisms [19, 20]. BLCR
is an open source, system-level C/R implementation inte-
grated with LAM/MPI via a callback function. The original
LAM/MPI+BLCR combination [30] only provides full C/R
mechanisms.

This paper contributes a hybrid full/incremental C/R so-
lution to significantly reduce the size of the checkpoint file
and the overhead of the checkpoint operations. Besides the
original nodes allocated to an MPI job, it assumes the avail-
ability of spare nodes where processes (MPI tasks) may be
relocated after a node failure. The paper further reduces the

1



overhead of the restart operation due to roll-back after node
failures,i.e., restoration from full/incremental checkpoints
on spare nodes, which only moderately increases the restart
cost relative to a restore from a single, full checkpoint. After
accounting for cost and savings,savings due to incremen-
tal checkpoints significantly outweigh the loss on restart
operations for over novel hybrid approach.

We conducted a set of experiments on an 18-node
dual-processor (each dual core) Opteron cluster. We as-
sessed the viability of our approach using the NAS (NASA
Advanced Supercomputing) Parallel Benchmark suite and
mpiBLAST. Experimental results show that the overhead of
our hybrid full/incremental C/R mechanism is significantly
lower than that of the original C/R mechanism relying on
full checkpoints. More specifically, experimental results
indicate that the cost saved by replacing three full check-
points with three incremental checkpoints is 16.64 seconds
while the restore overhead amounts to just 1.17 for an over-
all savings of 15.47 seconds on average for the NAS Parallel
Benchmark suite and mpiBLAST. The potential of savings
due to our hybrid incremental/full C/R technique should
even be higher in practice as (1) much higher ratios than
just 1/3 for full/incremental checkpoints may be employed
and (2) the amount of lost work would be further reduced if
more frequent, lighter weight checkpoints were employed.
Moreover, our approach can be easily integrated with other
techniques, such as job-pause and migration mechanisms
[34, 35] to avoid requeuing overhead by letting the sched-
uled job tolerate faults so that it can continue executing with
spare nodes.

The paper is structured as follows. Section 2 presents the
design of our hybrid full/incremental C/R mechanism. Sec-
tion 3 identifies and describes the implementation details.
Subsequently, the experimental framework is detailed and
measurements for our experiments are presented in Section
4 and 5, respectively. Our contributions are contrasted with
prior work in Section 6. The work is then summarized in
Section 7.

2 Design

This section presents an overview of the design of the hy-
brid full/incremental C/R mechanism with LAM/MPI and
BLCR. We view incremental checkpoints as complemen-
tary to full checkpoints in the following sense. Everyn-
th checkpoint will be a full checkpoint to capture an ap-
plication without prior checkpoint data while any check-
points in between are incremental, as illustrated in Fig-
ure 1(b). Such process-based incremental checkpointing
reduces checkpoint bandwidth and storage space require-
ments, and it leads to a lower rate of full checkpoints.

In the following, we first discuss the schedule of the
full/incremental C/R. We then discuss system support for
incremental checkpoints at two levels. First, the synchro-
nization and coordination operations (such as the in-flight
message drainage among all the MPI tasks to reach a consis-
tent global state) at the job level are detailed. Second, dirty
pages and related meta-data image information are saved
at the process/MPI task level, as depicted in Figure 3. We

Nodes

failure

restart

lamboot
n0 n2n1

mpirun

0 00full chkpt

lamboot
n0 n2n1

4 44

(b) New Full/Incr C/R

(a) Old Full C/R

1 11

2 22

3 33

4 44

n3

full chkpt

full chkpt

full chkpt

full chkpt

Nodes

failure

restart

lamboot
n0 n2n1

mpirun

0 00full chkpt

lamboot
n0 n2n1

1 11

1 11

n3

incr chkpt

full chkpt

incr chkpt

incr chkpt

Fig. 1: Hybrid Full/Incremental C/R Mechanism vs. Full C/R

nodes

n0 n2n1lamd

MPI app MPI app MPI app

1. incr. cmd

3. process incr. chkpt

MPI app

shared

storage

MPI app MPI app

2. drain in-flight data

MPI app MPI app

4. restore in-flight data, resume normal operation

mpirun

lamd lamd

mpirun

MPI app MPI app MPI app

MPI app

Fig. 2: Incremental Checkpoint at LAM/MPI

employ filtering of “dirty” pages at the memory manage-
ment level,i.e., memory pages modified (written to) since
the last checkpoint, which are utilized at node failures to
restart from the composition of full and incremental check-
points. Each component of our hybrid C/R mechanism is
detailed next.

2.1 Scheduler

We designed a decentralized scheduler, which can be de-
ployed as a stand-alone component or as an integral pro-
cess of an MPI daemon, such as the LAM daemon (lamd).
The scheduler will issue the full or incremental checkpoint
commands based on user-configured intervals or the system
environment, such as the execution time of the MPI job,
storage constraints for checkpoint files and the overhead of
preceding checkpoints.

Upon a node failure, the scheduler initiates a “job pause”
mechanism in a coordinated manner that effectively freezes
all MPI tasks on functional nodes and migrates processes of
failed nodes [34]. All nodes, functional (paused ones) and
migration targets (replaced failed ones), are restarted from
the last full plusn incremental checkpoints, as explained in
Section 2.5.

2.2 Incremental Checkpointing at the Job Level

Incremental Checkpointing at the Job Level is performed
in a sequence of steps depicted in Figure 2 and described in

2



the following.
Step 1: Incremental Checkpoint Trigger: When the

scheduler decides to engage in an incremental checkpoint, it
issues a corresponding command to thempirunprocess, the
initial LAM/MPI process at job invocation. This process, in
turn, broadcasts the command to all MPI tasks.

Step 2: In-flight Message Drainage:Before we stop
any process and save the remaining dirty pages and the cor-
responding process state in checkpoint files, all MPI tasks
coordinate a consistent global state equivalent to an internal
barrier. Based on our LAM/MPI+BLCR design, message
passing is handled at the MPI level while the process-level
BLCR mechanism is not aware of messaging at all. Hence,
we employ LAM/MPI’s job-centric interaction mechanism
for the respective MPI tasks to clear in-flight data in the MPI
communication channels.

Step 3: Process Incremental Checkpoint:Once all the
MPI tasks (processes) reach a globally consistent state, all
the MPI tasks perform the process-level incremental check-
point operations independently, as discussed in Section 2.3.

Step 4: Messages Restoration and Job Continuation:
Once the process-level incremental checkpoint has been
committed, drained in-flight messages are restored, and all
processes resume execution from their point of suspension.

2.3 Incremental Checkpointing at the Process
Level

Incremental checkpointing of MPI tasks (step 3 in Figure
2) is performed at the process level, which is shown in detail
in Figure 3. Compared to a full checkpoint, the incremental
variant lowers the checkpoint overhead by saving only those
memory pages modified since the last (full or incremental)
checkpoint. This is accomplished via our BLCR enhance-
ments by activating a handler thread (on right-hand side of
Figure 3) that signals compute threads to engage in the in-
cremental checkpoint. One of these threads subsequently
saves modified pages before participating in a barrier with
the other threads, as further detailed in Section 3.2.

thread1

thread2

running normally
blocked in ioctl()

handler_thr

block in ioctl()

run handler functions

checkpoint_req()

unblocks 

handler_thr

incr_checkpoint

still running normally

receives signal, runs handlers, 

and ioctl()

signal other threadsother work

barrier

barrier

cleanup

block

first thread restores

dirty pages

 shared resource

 registers/signals

reg/sig

registers/signals

mark checkpoint as complete

continue normal execution

Fig. 3: BLCR with Incremental Checkpoint in Bold Frame

A set of three files serve as storage abstraction for a
checkpoint snapshot, as depicted in Figure 4:

1. Checkpoint file acontains the memorypage content,
i.e., the data of only those memory pages modified
since the last checkpoint.

2. Checkpoint file bstores memorypage addresses, i.e.,
address and offset of the saved memory pages for each
entry infile a.

3. Checkpoint file ccovers othermeta information, e.g.,
linkage of threads, register snapshots, and signal infor-
mation pertinent to each thread within a checkpointed
process / MPI task.

chkpt file a

incr

chkpt 1

P6P5P1P4P3P4P2P4P3P2P1P0

full chkpt
incr

chkpt 2

incr

chkpt 3

Pi: content of memory page i

chkpt file b

chkpt file c

A0

O0

A5

O10

A6

O11

A1

O1

A2

O2

A3

O3

A4

O4

A2

O5

A4

O6

A3

O7

A4

O8

A1

O9

Ai: address of memory page i

Oi: offset in file a of the corresponding memory page

structure info of file b register info signal info etc.

Fig. 4: Structure of Checkpoint Files

File a andfile bmaintain their data in a log-based append
mode for successive incremental checkpoints. The last full
and subsequent incremental checkpoints will only be dis-
charged (marked for potential removal) once the next full
checkpoint has been committed. Their availability is re-
quired for the potential restart up until a superseding check-
point is written to stable storage. In contrast, only the latest
version offile c is maintained since all the latest information
is saved as one meta-data record, which is sufficient for the
next restart.

In addition, memory pages saved infile a by an older
checkpoint can be discharged once they are captured in a
subsequent checkpoint due to page modifications (writes)
since the last checkpoint. For example, in Figure 4, mem-
ory page 4 saved by the full checkpoint can be discharged
when the first incremental checkpoint saves the same page.
Later, the same page saved by the first incremental check-
point can be discharged when it is saved by the second in-
cremental checkpoint. In our on-going work, we are devel-
oping a garbage collection thread for this purpose. Similar
to segment cleaning in log-structured file systems [28], the
file is divided into segments (each of equal size as they rep-
resent memory pages) that are written sequentially. A sepa-
rate garbage collection thread tracks these segments within
the file, removes old segments (marked appropriately) from
the end and puts new checkpointed memory data into the
next segment. As a result, the file morphs into a large cir-
cular buffer as the writer thread adds new segments to the
front and the cleaner thread removes old segments from the
end toward the front (and then wraps around). Meanwhile,
checkpointfile b is updated with the new offset information
relative tofile a.

3



2.4 Modified Memory Page Management

We utilize a Linux kernel-level memory management
module that has been extended by a page-table dirty bit
scheme to track modified pages between checkpoints [35].
This is accomplished by duplicating the dirty bit of the
page-table entry (PTE) and extending kernel-level functions
that access the PTE dirty bit so that the duplicate bit is set,
which incurs negligible overhead (see [35] for details).

2.5 MPI Job Restart from Full+Incremental
Checkpoints

Upon a node failure, the scheduler coordinates the restart
operation on both the functional nodes and the spare nodes.
First, the process ofmpirun is restarted, which, in turn, is-
sues the restart command to all the nodes for the MPI tasks.
Thereafter, recovery commences on each node by restor-
ing the last incremental checkpoint image, followed by
the memory pages from the preceding incremental check-
points in reverse sequence up to the pages from the last
full checkpoint image, as depicted in Figure 5. The scan
over all incremental checkpoints and the last full check-
point allows the recovery of the last stored version of a page,
i.e., the content of any page only needs to be written once
for fast restart. After process-level restart has been com-
pleted, drained in-flight messages are restored, and all the
processes resume execution from their point of suspension.
Furthermore, some pages saved in preceding checkpoints
may be invalid (unmapped) in subsequent ones and need
not be restored. The latest memory mapping information
saved incheckpoint file cis also used for this purpose.

chkpt file a

restart

incr

chkpt 1

P6P5P1P4P3P4P2P4P3P2P1P0

full chkpt
incr

chkpt 2

incr

chkpt 3

Pi: content of memory page i

Fig. 5: Fast Restart from Full/Incremental Checkpoints

3 Implementation Issues

Our hybrid full/incremental checkpoint/restart mecha-
nism is currently implemented with LAM/MPI and BLCR.
The overall design and implementation allows adaptation
of this solution to arbitrary MPI implementations, such
as MPICH and OpenMPI. Next, we present the imple-
mentation details of the full/incremental C/R mechanism,
including the MPI-level communication/coordination real-
ized within LAM/MPI and the process-level fundamental
capabilities of BLCR.

3.1 Full/Incremental Checkpointing at the Job
Level

We developed new commandslam full checkpointand
lam incr checkpointto issue full and incremental check-
point commands, respectively. The decentralized sched-
uler relays these commands to thempirun process of the
MPI job. Subsequently,mpirunbroadcasts full/incremental

checkpoint commands to each MPI tasks. At the LAM/MPI
level, we also drain the in-flight data and reach to a consis-
tent internal state before processes launch the actual check-
point operation (see step 2 in Figure 2). We then restore the
in-flight data and resume normal operation after the check-
point operation of the process has completed (see step 4 in
Figure 2).

3.2 Full/Incremental Checkpointing at the Pro-
cess Level

We integrated several new BLCR features to extend its
process-level checkpointing facilities, including the new
commandscr full checkpoint and cr incr checkpoint to
trigger full and incremental checkpoints at the process level
within BLCR. Both of these commands write their respec-
tive portion of the process snapshot to one of the three files
(see Section 2 and Figure 4).

Figure 3 depicts the steps involved in issuing an incre-
mental checkpoint in reference to BLCR. Our focus is on
the enhancements to BLCR (large dashed box). In the fig-
ure, time flows from top to bottom, and the processes and
threads involved in the checkpoint are placed from right to
left. Activities performed in the kernel are surrounded by
dotted lines. A callback thread (right side) is spawned as
the application registers a threaded callback and blocks in
the kernel until a checkpoint has been committed. When
mpirun invokes the newly developedcr incr checkpoint
command extensions to BLCR, it provides the process id
as an argument. In response, thecr incr checkpointmech-
anism issues anioctl call, thereby resuming the callback
thread that was previously blocked in the kernel. After the
callback thread invokes the individual callback for each of
the other threads, it reenters the kernel and sends a signal
to each thread. These threads, in response, engage in exe-
cuting the callback signal handler and then enter the kernel
through anotherioctl call.

Once in the kernel, the first thread saves the dirty mem-
ory pages modified since the last checkpoint. Then, threads
take turns saving their register and signal information to the
checkpoint files. After a final barrier, the process exits the
kernel and enters user space, at which point the checkpoint
mechanism has completed.

The commandcr full checkpointperforms similar work,
except that once the kernel is entered, the first thread saves
all the non-empty memory pages rather than only the dirty
ones.

3.3 Restart from Full+Incremental Checkpoints
at Job and Process Levels

A novel command,lam fullplusincr restart, has been de-
veloped to perform the restart work at the job level with
LAM/MPI. Yet another command,cr fullplusincr restart,
has been devised to support the restart work at the process
level within BLCR. In concert, the two commands imple-
ment the restart from the three checkpoint files and resume
the normal execution of the MPI job as discussed in Section
2.

4



4 Experimental Framework

Experiments were conducted on a dedicated Linux clus-
ter comprised of 18 compute nodes, each equipped with two
AMD Opteron-265 processors (each dual core) and 2 GB
of memory. The nodes are interconnected by two networks,
both with 1 Gbps Ethernet. The OS used is Fedora Core 5
Linux x86 64 with our dirty bit patch as described in Sec-
tion 2. We extended LAM/MPI and BLCR with our hybrid
full/incremental C/R mechanism of this platform.

For all following experiments we use the MPI version
of the NPB suite [37] (version 3.3) as well as mpiBLAST
[1]. NPB is a suite of programs widely used to evaluate the
performance of parallel system, while the latter is a parallel
implementation of NCBI BLAST, which splits a database
into fragments and distributes the query tasks to workers by
query segmentation before the BLAST search is performed
in parallel.

5 Experimental Results

Experiments were conducted to assess (a) overheads as-
sociated with the full and incremental checkpoints, (b) full
and incremental checkpoint file size and memory check-
pointed (which is the main source of the checkpointing
overhead), (c) restart overheads associated with the full and
incremental checkpoints, and (d) the relationship between
checkpoint interval and checkpoint overhead.

Out of the NPB suite, the BT, CG, FT, LU and SP bench-
marks were exposed to class C data inputs running on 4, 8
or 9 and 16 nodes, and to class D data inputs on 8 or 9 and
16 nodes. Some NAS benchmarks have 2D, others have 3D
layouts for23 or 32 nodes, respectively. The NAS bench-
mark EP is exposed to class C, D and E data inputs running
on 4, 8 and 16 nodes. All the other NAS benchmarks were
not suitable for our experiments since they execute for too
short a period to be periodically checkpointed, such as IS, as
depicted in Figure 7(a), or they have excessive memory re-
quirement, such as the benchmarks with class D data inputs
on 4 nodes.

Since the version of mpiBLAST we used assigns one
process as the master and another to perform file output,
the number of actual worker processes performing parallel
input is the total process number minus two. Each worker
process reads several database fragments. With our ex-
periments, we set the mpiBLAST-specific argument-use-
virtual-frags, which enables caching of database fragments
in memory (rather than local storage) for quicker searches.

5.1 Checkpointing Overhead

The first set of experiments assesses the overhead in-
curred due to one full or incremental checkpoint. Figures
7(a), 8(a), 9(a) and 10(a) depict the base execution time of a
job (benchmark) without checkpointing while Figures 7(b),
8(b), 9(b) and 10(b) depict the checkpoint overhead. As
these results show, the checkpoint overhead is uniformly
small relative to the overall execution time, even for a larger
number of nodes. Prior work [34] already compared the
overhead of full checkpointing with the base execution, and

92%

93%

94%

95%

96%

97%

98%

99%

100%

B
T

.9

B
T

.1
6

C
G

.8

C
G

.1
6

L
U

.8

L
U

.1
6

M
G

.8

M
G

.1
6

S
P

.9

S
P

.1
6

m
p

iB
L

A
S

T
.4

m
p

iB
L

A
S

T
.8

m
p

iB
L

A
S

T
.1

6

Execution time Full checkpoint overhead

Fig. 6: Full Checkpoint Overhead of NPB Class D and mpi-
BLAST

the ratio is below 10% for most NPB benchmarks with Class
C data inputs. Figure 6 depicts the measured overhead for
single full checkpointing relative to the base execution time
of NPB with Class D data inputs and mpiBLAST (without
checkpointing). The ratio is below 1%, except for MG, as
discussed in the following.

MG has a larger checkpoint overhead (large checkpoint
file), but the ratio is skewed due to a short overall execu-
tion time (see Figure 8(a)). In practice, with more realis-
tic and longer checkpoint intervals, a checkpoint would not
be necessitated within the application’s execution. Instead,
the application would have been restarted from scratch. For
longer runs with larger inputs of MG, the fraction of check-
point/migration overhead would have been much smaller.

Figures 7(b), 8(b), 9(b) and 10(b) show that the over-
head of incremental checkpointing is smaller than that of
full checkpointing, so the overhead of incremental check-
pointing is less significant. Hence, a hybrid full/incremental
checkpointing mechanism reduces runtime overhead com-
pared to full checkpointing throughout, i.e., under varying
number of nodes and input sizes.

5.2 Checkpointing File Size

Besides overhead due to checkpointing, we assessed the
actual footprint of the checkpointing file. Figures 7(c), 8(c),
9(c) and 10(c) depict the size of the checkpoint files for
one process of each MPI application. Writing many files of
such size to shared storage synchronously may be feasible
for high-bandwidth parallel file systems. In the absence of
sufficient bandwidth for simultaneous writes, we provide a
multi-stage solution where we first checkpoint to local stor-
age. After local checkpointing, files will be asynchronously
copied to shared storage, an activity governed by the sched-
uler. This copy operation can be staggered (again governed
by the scheduler) between nodes. Upon failure, a spare node
restores data from the shared file system while the remain-
ing nodes roll back using the checkpoint file on local stor-
age, which results in less network traffic.

Overall, the experiments show that:

1. the overhead of full/incremental checkpointing of the

5



0

200

400

600

800

1000

1200

BT CG FT IS LU MG SP

Jo
b

 e
x

ec
u

ti
o

n
 t

im
e 

(s
ec

o
n

d
s)

on 4 nodes

on 8/9 nodes

on 16 nodes

(a) Job Execution Time

0

10

20

30

40

50

60

B
T

.4

B
T

.9

B
T

.1
6

C
G

.4

C
G

.8

C
G

.1
6

F
T

.4

F
T

.8

F
T

.1
6

L
U

.4

L
U

.8

L
U

.1
6

S
P

.4

S
P

.9

S
P

.1
6

C
h

ec
k

p
o

in
t 

o
v

er
h

ea
d

 (
se

co
n

d
s)

Full chkpt

Incr. chkpt

(b) Checkpoint Time

0

200

400

600

800

1000

1200

1400

1600

1800

2000

B
T

.4

B
T

.9

B
T

.1
6

C
G

.4

C
G

.8

C
G

.1
6

F
T

.4

F
T

.8

F
T

.1
6

L
U

.4

L
U

.8

L
U

.1
6

S
P

.4

S
P

.9

S
P

.1
6

C
h

ec
k

p
o

in
t 

fi
le

 s
iz

e 
(M

B
)

Full chkpt

Incr. chkpt

(c) Checkpoint File Size

0

1

2

3

4

5

6

7

8

9

B
T

.4

B
T

.9

B
T

.1
6

C
G

.4

C
G

.8

C
G

.1
6

F
T

.4

F
T

.8

F
T

.1
6

L
U

.4

L
U

.8

L
U

.1
6

S
P

.4

S
P

.9

S
P

.1
6

R
es

ta
rt

 o
v

er
h

ea
d

 (
se

co
n

d
s)

From full chkpt

From full+3incr. chkpt

(d) Restart Time

Fig. 7: Evaluation with NPB Class C on 4, 8/9, and 16 Nodes

0

2000

4000

6000

8000

10000

12000

BT CG LU MG SP

Jo
b

 e
x

ec
u

ti
o

n
 t

im
e 

(s
ec

o
n

d
s)

on 8/9 nodes

on 16 nodes

(a) Job Execution Time on 8/9 and 16 Nodes

0

5

10

15

20

25

30

35

40

45

50

BT CG LU MG SP

C
h

ec
k

p
o

in
t 

o
v

er
h

ea
d

 (
se

co
n

d
s)

Full chkpt

Incr. chkpt

(b) Checkpoint Time on 16 Nodes

0

200

400

600

800

1000

1200

1400

1600

1800

BT CG LU MG SP

C
h

ec
k

p
o

in
t 

fi
le

 s
iz

e 
(M

B
)

Full chkpt

Incr. chkpt

(c) Checkpoint File Size on 16 Nodes

0

2

4

6

8

10

12

14

16

BT CG LU MG SP

R
es

ta
rt

 o
v

er
h

ea
d

 (
se

co
n

d
s)

From full chkpt

From full+3incr. chkpt

(d) Restart Time on 16 Nodes

Fig. 8: Evaluation with NPB Class D

MPI job is largely proportional to the size of the check-
point file;

2. the overhead of full checkpointing is nearly the same
at any time of the execution of the job;

3. the overhead of incremental checkpointing is nearly
the same at any interval; and

4. the overhead of incremental checkpointing is lower

than that of full checkpointing (except some cases of
EP, which are lower than 0.45 seconds, which is ex-
cessively short. If required at this sort rate, one can
employ full checkpointing only).

The first observation indicates that the ratio of commu-
nication overhead to computation overhead for C/R of the

6



1

10

100

1000

10000

100000

Class C Class D Class E

Jo
b

 e
x

ec
u

ti
o

n
 t

im
e 

(s
ec

o
n

d
s)

on 4 nodes

on 8 nodes

on 16 nodes

(a) Job Execution Time

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

C.4 C.8 C.16 D.4 D.8 D.16 E.4 E.8 E.16

C
h

ec
k

p
o

in
t 

o
v

er
h

ea
d

 (
se

co
n

d
s)

Full chkpt

Incr. chkpt

(b) Checkpoint Time

0.1

0.3

0.5

0.7

0.9

1.1

1.3

C.4 C.8 C.16 D.4 D.8 D.16 E.4 E.8 E.16

C
h

ec
k

p
o

in
t 

fi
le

 s
iz

e 
(M

B
)

Full chkpt Incr. chkpt

(c) Checkpoint File Size

Fig. 9: Evaluation with NPB EP Class C/D/E on 4, 8 and 16 nodes

0

2000

4000

6000

8000

10000

12000

14000

4(6) 8(10) 16(18)

Number of workers (number of compute nodes)

Jo
b

 e
x

ec
u

ti
o

n
 t

im
e 

(s
ec

o
n

d
s)

(a) Job Execution Time

0.1

1

10

100

4(6) 8(10) 16(18)

Number of workers (number of compute nodes)

C
h

ec
k

p
o

in
t 

o
v

er
h

ea
d

 (
se

co
n

d
s) Full chkpt

Incr. chkpt

(b) Checkpoint Time

1

10

100

1000

10000

4(6) 8(10) 16(18)

Number of workers (number of compute nodes)

C
h

ec
k

p
o

in
t 

fi
le

 s
iz

e 
(M

B
)

Full chkpt

Incr. chkpt

(c) Checkpoint File Size

0

1

2

3

4

5

6

7

4(6) 8(10) 16(18)

Number of workers (number of compute nodes)

R
es

ta
rt

 o
v

er
h

ea
d

 (
se

co
n

d
s)

From full chkpt

From full+3incr. chkpt

(d) Restart Time

Fig. 10: Evaluation with mpiBLAST

MPI job is relatively low. Since checkpoint files are, on av-
erage, large, the time spent on storing/restoring checkpoints
to/from disk accounts for most of the measured overhead.
This overhead is further reduced by the potential savings
through incremental checkpointing.

For full/incremental checkpointing of EP (Figure 9(b)),
incremental checkpointing of CG with Class C data inputs
(Figure 7(b)) and incremental checkpointing of mpiBLAST
(Figure 10(b)), the footprint of the checkpoint file is small
(smaller than 13MB), which results in a relatively small
overhead. Thus, the checkpoint overhead mainly reflects
the variance of the communication overhead inherent to the
benchmark, which increases with the node count. However,
the overall checkpoint overhead for these cases is smaller
than 1 second. Hence, communication overhead of the ap-
plications did not significantly contribute to the overheador
interfere with checkpointing. This indicates a high poten-
tial of our hybrid full/incremental checkpointing solution
to scale to larger clusters, and we have analyzed our data
structures and algorithms to assure suitability for scalability.
Due to a lack of large-scale experimentation platforms flex-

ible enough to deploy our kernel modifications, new BLCR
features and LAM/MPI enhancements, such larger scale ex-
periments cannot currently be realized, neither at National
Labs nor at larger-scale clusters within universities where
we have access to resources.

The second observation about full checkpoint overheads
above indicated that the size of the full checkpoint file re-
mains stable during job execution. The benchmarks codes
do not allocate or free heap memory dynamically within
timesteps of execution; instead, all allocation is performed
during initialization, which is typical for most parallel codes
(except for adaptive codes [36]).

The third observation is obtained by measuring the
checkpoint file size with different checkpoint intervals for
incremental checkpointing, i.e., with intervals of 30, 60,90,
120, 150 and 180 seconds for NPB Class C and intervals
of 2, 4, 6, 8, 10 and 12 minutes for NPB Class D and mpi-
BLAST.

Thus, we can assume the time spent on checkpointing is
constant. This assumption is critical to determine the opti-
mal full/incremental checkpoint frequency.

7



The fourth observation verifies the superiority and jus-
tifies the deployment of our hybrid full/incremental check-
pointing mechanism.

5.3 Restart Overhead

Figures 7(d), 8(d) and 10(d) compare the restart over-
head of our hybrid full/incremental solution from one full
checkpoint plus three incremental checkpoints with that of
the original solution restarting from one full checkpoint.
The results indicate that the wall clock time for restart
from full plus three incremental checkpoints exceeds that
of restart from one full checkpoint by 0-253% depending
on the application, and it is 68% larger (1.17seconds) on
average for all cases. The largest additional cost of 253%
(10.6 seconds) was observed for BT under class D inputs for
16 nodes due to its comparatively large memory footprint
of the incremental checkpointing. Yet, this overhead is not
on the critical path as failures occur significantly less fre-
quently than periodic checkpoints,i.e., our hybrid approach
reduces the cost along the critical path of checkpointing.
For mpiBLAST and CG, the footprint of incremental check-
pointing is comparatively so small that the overhead of
restarting from full plus three incremental checkpoints is
almost the same as that of restarting from one full check-
point. Yet, the time saved by three incremental checkpoints
over three full checkpoints is 16.64 seconds on average for
all cases. Even for BT under class D inputs for 16 nodes
(which has the largest restart cost loss ratio), the saving is
23.38 seconds while the loss is 10.6 seconds. We can fur-
ther extend the benefit by increasing the incremental check-
pointing count between two full checkpoints.

We can also assess the accumulated checkpoint file size
of one full checkpoint plus three incremental checkpoints,
which is 185% larger than that of one full checkpoint. How-
ever, as just discussed, the overhead of restarting from one
full plus three incremental checkpoint is only 68% larger.
This is due to the following facts:

1. a page saved by different checkpoints is only restored
once;

2. file reading for restarting is much faster than file writ-
ing for checkpointing; and

3. some pages saved in preceding checkpoints may be in-
valid and need not be restored at a later checkpoint.

5.4 Benefit of Hybrid Full/Incremental C/R
Mechanism

Figure 11 depicts sensitivity results of the overall savings
(the cost saved by replacing full checkpoints with incremen-
tal ones minus the loss on the restore overhead) for differ-
ent number of incremental checkpoints between any adja-
cent full ones. Savings increase proportional to the num-
ber of incremental checkpoints (as the y axis in the figure
is on a logarithmic base), but the amount of incremental
checkpoints is still limited by stable storage capacity (with-
out segment-style cleanup). The results are calculated by
using the following formulae:

Sn = n × (Of − Oi) − (Rf+ni
− Rf )

0.1

1

10

100

1000

1 2 3 4 5 6

Number of incremental checkpoints between two full checkpoints

S
av

in
g

s 
(s

ec
o

n
d

s)

CG.D

SP.D

BT.D

mpiBLAST

LU.D

CG.C

FT.C

BT.C

MG.D

LU.C

SP.C

Fig. 11: Savings of Hybrid Full/Incremental C/R Mechanism
for NPB and mpiBlast on 16 Nodes

whereSn is the saving withn incremental checkpoints be-
tween two full checkpoints,Of is the full checkpoint over-
head,Oi is the incremental checkpoint overhead,Rf+ni

is
the overhead of restarting from full+n incremental check-
points andRf is the overhead of restarting from one full
checkpoint. For mpiBLAST and CG, we may even perform
only incremental checkpointing after the first full check-
point is captured initially since the footprint of incremen-
tal checkpoints is so small that we will not run out of
drive space at all (or, at least, for a very long time). Not
only should a node failure be the exception over the set
of all nodes, but the lower overhead of a single incremen-
tal checkpoint provides opportunities to increase check-
point frequencies compared to an application running with
full checkpoints only. Such shorter incremental check-
point frequencies reduce the amount of work lost when a
restart is necessitated by a node failure. Hence, the hy-
brid full/incremental checkpointing mechanism effectively
reduces the overall overhead relative to C/R.

Table 2 presents detailed measurements on the savings
of incremental checkpointing, the overhead of restart from
full plus incremental checkpoints, the relationship between
the checkpoint file size and restart overhead, and the over-
all benefit from the hybrid full/incremental C/R mechanism.
The benchmarks are sorted by the benefit. The table shows
that (1) the cost caused by restart from one full plus one in-
cremental checkpoints (which isRf+1i

- Rf ) is low, com-
pared to the savings by replacing full checkpoints with in-
cremental ones (which isOf - Oi), and can be ignored for
most of the benchmarks; (2) the restart cost is nearly pro-
portional to the file size (except that some pages are check-
pointed twice at both full and incremental checkpoints but
later only restored once and thus lead to no extra cost);
(3) for all the benchmarks, we can benefit from the hybrid
full/incremental C/R mechanism, and the performance im-
provement depends on the memory access characteristics of
the application.

Naksinehaboonet al. provide a model that aims at re-
ducing full checkpoint overhead by performing a set of in-
cremental checkpoints between two consecutive full check-
points [24]. They further develop a method to determine the

8



Benchmarks CG.D SP.D BT.D mpiBLAST LU.D CG.C FT.C BT.C MG.D LU.C SP.C

Savings of (Of - Oi) 36.20 6.73 7.79 3.34 2.81 1.85 1.69 1.22 1.51 0.38 0.28
Restart overhead

of 0.03 1.28 3.45 0.01 0.59 0.01 0.20 -0.02 0.81 0.02 0.04
(Rf+1i

- Rf )
File increases

for 1 incr. chkpt 17.26 1151.88 1429.14 10.45 561.46 2.10 384.41 100.67 1205.23 41.09 80.98
[MB]

Benefit of
hybrid C/R (S1) 36.17 5.45 4.34 3.33 2.21 1.84 1.50 1.25 0.70 0.36 0.24

Table 2: Savings by Incremental Checkpoint vs. Overhead on Restart

optimal number of incremental checkpoints between full
checkpoints. They obtain

m =

⌈

(1 − µ) × Of

Pi × δ
− 1

⌉

wherem is the number of incremental checkpoints between
two consecutive full checkpoint,µ is the incremental check-
point overhead ratio (µ = Oi/Of ), Pi is the probability that
a failure will occur after the second full checkpoint and be-
fore the next incremental checkpoint, andδ is additional re-
covery cost per incremental checkpoint. With the data from
Table 2, we can determine

m =

⌈

9.92

Pi

− 1

⌉

. Since0 < Pi < 1, a lower bound form is 8.92, which in-
dicates the potential for even more significant savings than
just those depicted in Figure 11.

Overall, the overhead of the hybrid full/incremental C/R
mechanism is significantly lower than the original periodi-
cal full C/R mechanism.

6 Related Work

Checkpoint/Restart: C/R techniques for MPI jobs fre-
quently deployed in HPC environments can be divided into
two categories: coordinated (LAM/MPI+BLCR [30, 11],
CoCheck [32], etc.) and uncoordinated (MPICH-V [3, 4]).
Coordinated techniques commonly rely on a combination
of OS support to checkpoint a process image (e.g., via
the BLCR Linux module [11]) or user-level runtime li-
brary support. Collective communication among MPI tasks
is used for the coordinated checkpoint negotiation [30].
Uncoordinated C/R techniques generally rely on logging
messages and possibly their temporal ordering for asyn-
chronous non-coordinated checkpointing,e.g., MPICH-V
[3, 4] that uses pessimistic message logging. The frame-
work of OpenMPI [2, 19] is designed to allow both coordi-
nated and uncoordinated types of protocols. However, con-
ventional C/R techniques checkpoint the entire process im-
age leading to high checkpoint overhead, heavy I/O band-
width requirements and considerable hard drive pressure,
even though only a subset of the process image of all
MPI tasks changes between checkpoints. With our hybrid
full/incremental C/R mechanism, we mitigate the situation

by checkpointing only the modified pages and at a lower
rate than required for full checkpoints.

Incremental Checkpointing: Recent studies focus on in-
cremental checkpointing [13, 16, 18]. TICK (Transpar-
ent Incremental Checkpointer at Kernel Level) [13] is a
system-level checkpointer implemented as a kernel thread.
It supports incremental and full checkpoints. However, it
checkpoints only sequential applications running on a sin-
gle process that do not use inter-process communication or
dynamically loaded shared libraries.In contrast, our so-
lution transparently supports incremental checkpoints for
an entire MPI job with all its processes. Pickpt[16] is
a page-level incremental checkpointing facility. It provides
space-efficient techniques for automatically removing use-
less checkpoints aiming to minimizing the use of disk space
that differ from our garbage collection thread technique.
Yi et al. [38] develop an adaptive page-level incremental
checkpointing facility based on the dirty page count as a
threshold heuristic to determine whether to checkpoint now
or later, a feature complementary to our work that we could
adopt within our scheduler component. However, Pickpt
and Yi’s adaptive scheme are constrained to C/R of a sin-
gle process, just as TICK was, while we cover an entire
MPI job with all its processes and threads within processes.
Agarwal et al. [1] provide a different adaptive incremen-
tal checkpointing mechanism to reduce the checkpoint file
size by using a secure hash function to uniquely identify
changed blocks in memory. Their solution not only appears
to be specific to IBM’s compute node kernel on BG/L, it
also requires hashes for each memory page to be computed,
which tends to be more costly than OS-level dirty-bit sup-
port as caches are thrashed when each memory location of
a page has to be read in their approach.

A prerequisite of incremental checkpointing is the avail-
ability of a mechanism to track modified pages during each
checkpoint. Two fundamentally different approaches may
be employed, namely page protection mechanisms or page-
table dirty bits. Different implementation variants buildon
these schemes. One is the bookkeeping and saving scheme
that, based on the dirty bit scheme, copies pages into a
buffer [13]. Another solution is to exploit page write protec-
tion, such as inPickpt [16], to save only modified pages as
a new checkpoint. The page protection scheme has certain
draw-backs. Some address ranges, such as the stack, can

9



only be write protected if an alternate signal stack is em-
ployed, which adds calling overhead and increases cache
pressure. Furthermore, the overhead of user-level exception
handlers is much higher than kernel-level dirty-bit shadow-
ing. Thus, we selected the dirty bit scheme in our design,
yet in our own implementation within the Linux kernel.Our
approach is unique among this prior work in its ability to
capture and restore anentire MPI job with all its tasks,
including all relevant process information and OS kernel-
specific data.Hence, our scheme is more general than lan-
guage specific solutions (as in Charm++), yet lighter weight
than OS virtualization C/R techniques.

Reactive FT vs. Proactive FT: Besides reactive fault tol-
erance (FT), including the full/incremental C/R technique
discussed so far and reactive migration [23, 27, 10], proac-
tive FT has recently become a hot research area. The fea-
sibility of proactive FT has been demonstrated at the job
scheduling level [25], within OS virtualization [33] and in
Adaptive MPI [5, 6, 7] using a combination of (a) object
virtualization techniques to migrate tasks and (b) causal
message logging [12] within the MPI runtime system of
Charm++ applications. Wanget al. [35] provide a live
migration mechanism which is coarser grained than the
Charm++ approach as FT is provided at the process level,
thereby encapsulating most of the process context, includ-
ing open file descriptors, which are beyond the MPI runtime
layer. Proactive FT relies on failure predictors [29, 14, 15],
whose accuracy still has to be further developed. Yet, re-
active FT is still a requirement for HPC systems, and our
solution improves reactive FT, optionally complemented by
proactive support, at reduced overhead due to incremental
process-level checkpoints for all MPI tasks.

Checkpoint Interval Model: Aiming at optimality for
checkpoint overhead and rollback time over a set of MPI
jobs, several models have been developed to determine job-
specific intervals for full or incremental checkpoints. Yong
[39] presented a checkpoint model and obtained a fixed op-
timal checkpoint interval. Based on Youngs work, Daly
[8, 9] improved the model to an optimal checkpoint place-
ment from a first order to a higher order approximation.
Liu et al. provide a model for an optimal full C/R strat-
egy toward minimizing rollback and checkpoint overheads
[22]. Their scheme focuses on the fault tolerance challenge,
especially in a large-scale HPC system, by providing opti-
mal checkpoint placement techniques that are derived from
the actual system reliability. As we discussed in Section 5,
Naksinehaboonet al. provide a model to perform a set of in-
cremental checkpoints between two consecutive full check-
points [24] and a method to determine the optimal num-
ber of incremental checkpoints between full checkpoints.
While their work is constrained to simulations based on log
data, our work focuses on the design and implementation of
process-level incremental C/R for MPI tasks. Their work
is complementary in that their model could be utilized to
fine-tune our incremental C/R rate. In fact, the majority
of their results on analyzing failure data logs show that the

full/incremental C/R model outperforms full checkpointing.
Furthermore, our reverse scanning restart mechanism is su-
perior to the one used in their model.

7 Conclusion

This work contributes a novel hybrid full/incremental
C/R mechanism with a concrete implementation within
LAM/MPI and BLCR with the following features: (1) It
provides a dirty bit mechanism to track modified pages be-
tween incremental checkpoints; (2) only the subset ofmod-
ified pages is appended to the checkpoint file together with
page metadata updates for incremental checkpoints; (3) in-
cremental checkpoints complement full checkpoints by re-
ducing I/O bandwidth and storage space requirements while
allowing lower rates for full checkpoints; (4) a restart after
a node failure requires a scan over all incremental check-
points and the last full checkpoint to recover from the last
stored version of a page,i.e., the content of any page only
needs to be written to memory once for fast restart; (5)
a decentralized scheduler coordinates the full/incremental
C/R mechanism among the MPI tasks. Results indicate that
the performance of the hybrid full/incremental C/R mech-
anism is significantly lower than that of the original full
C/R. For the NPB suite and mpiBLAST, the average sav-
ings due to replacing three full checkpoints with three in-
cremental checkpoints is 16.64 seconds — at the cost of
only 1.17 seconds if a restart is required after a node failure
due to restoring one full plus three incremental checkpoints.
Hence, the overall saving amounts to 15.47 seconds. Even
more significant saving would be obtained if the rate of in-
cremental checkpoints between two full checkpoints was in-
creased. Our hybrid approach can further be utilized to (1)
develop an optimal (or near-optimal) checkpoint placement
algorithm, which combines full and incremental checkpoint
options in order to reduce the overall runtime and applica-
tion overhead; (2) create and assess applications with vary-
ing memory pressure to measure the tradeoff between full
and incremental checkpoints and to provide heuristics ac-
cordingly; and (3) combine related job pause/live migration
techniques [33, 34, 35] with incremental checkpoints to pro-
vide a reliable multiple-level fault tolerant framework that
incurs lower overhead than previous schemes. Overall, our
hybrid full/incremental checkpointing approach is not only
novel but also superior to prior non-hybrid techniques.

References

[1] Saurabh Agarwal, Rahul Garg, Meeta S. Gupta, and Jose E.
Moreira. Adaptive incremental checkpointing for massively
parallel systems. InICS ’04: Proceedings of the 18th annual
international conference on Supercomputing, pages 277–
286, New York, NY, USA, 2004. ACM.

[2] B. Barrett, J. M. Squyres, A. Lumsdaine, R. L. Graham, and
G. Bosilca. Analysis of the component architecture overhead
in Open MPI. InEuropean PVM/MPI Users’ Group Meeting,
Sorrento, Italy, September 2005.

10



[3] G. Bosilca, A. Boutellier, and F. Cappello. MPICH-V: To-
ward a scalable fault tolerant MPI for volatile nodes. InSu-
percomputing, November 2002.

[4] Bouteiller Bouteiller, Franck Cappello, Thomas Herault,
Krawezik Krawezik, Pierre Lemarinier, and Magniette Mag-
niette. MPICH-V2: a fault tolerant MPI for volatile nodes
based on pessimistic sender based message logging. InSu-
percomputing, 2003.

[5] S. Chakravorty, C. Mendes, and L. Kale. Proactive fault tol-
erance in large systems. InHPCRI: 1st Workshop on High
Performance Computing Reliability Issues, in Proceedings
of the 11th International Symposium on High Performance
Computer Architecture (HPCA-11). IEEE Computer Society,
2005.

[6] S. Chakravorty, C. Mendes, and L. Kale. Proactive fault tol-
erance in MPI applications via task migration. InInterna-
tional Conference on High Performance Computing, 2006.

[7] S. Chakravorty, C. Mendes, and L. Kale. A fault tolerance
protocol with fast fault recovery. InInternational Parallel
and Distributed Processing Symposium, 2007.

[8] J. T. Daly. A model for predicting the optimum checkpoint
interval for restart dumps. InInternational Conference on
Computational Science, pages 3–12, 2003.

[9] J. T. Daly. A higher order estimate of the optimum check-
point interval for restart dumps.Future Gener. Comput. Syst.,
22(3):303–312, 2006.

[10] Fred Douglis and John K. Ousterhout. Transparent process
migration: Design alternatives and the sprite implementa-
tion. Softw., Pract. Exper., 21(8):757–785, 1991.

[11] J. Duell. The design and implementation of berkeley lab’s
linux checkpoint/restart. Tr, Lawrence Berkeley National
Laboratory, 2000.

[12] Elmootazbellah N. Elnozahy and Willy Zwaenepoel.
Manetho: Transparent roll back-recovery with low overhead,
limited rollback, and fast output commit.IEEE Trans. Com-
put., 41(5):526–531, 1992.

[13] Roberto Gioiosa, Jose Carlos Sancho, Song Jiang, and Fab-
rizio Petrini. Transparent, incremental checkpointing atker-
nel level: a foundation for fault tolerance for parallel com-
puters. InSupercomputing, 2005.

[14] Xiaohui Gu, Spiros Papadimitriou, Philip S. Yu, and Shu-
Ping Chang. Toward predictive failure management for dis-
tributed stream processing systems. InIEEE ICDCS, June
2008.

[15] Prashasta Gujrati, Yawei Li, Zhiling Lan, Rajeev Thakur,
and John White. A meta-learning failure predictor for Blue-
Gene/L systems. InICPP, September 2007.

[16] Junyoung Heo, Sangho Yi, Yookun Cho, Jiman Hong, and
Sung Y. Shin. Space-efficient page-level incremental check-
pointing. InSAC ’05: Proceedings of the 2005 ACM sym-
posium on Applied computing, pages 1558–1562, New York,
NY, USA, 2005. ACM.

[17] C. Hsu and W. Feng. A power-aware run-time system for
high-performance computing. InSC, 2005.

[18] Shang-Te Hsu and Ruei-Chuan Chang. Continuous check-
pointing: joining the checkpointing with virtual memory
paging.Softw. Pract. Exper., 27(9):1103–1120, 1997.

[19] Joshua Hursey, Jeffrey M. Squyres, and Andrew Lumsdaine.
A checkpoint and restart service specification for Open MPI.
Technical report, Indiana University, Computer Science De-
partment, 2006.

[20] Joshua Hursey, Jeffrey M. Squyres, Timothy I. Mattox, and
Andrew Lumsdaine. The design and implementation of

checkpoint/restart process fault tolerance for Open MPI. In
12th IEEE Workshop on Dependable Parallel, Distributed
and Network-Centric Systems, 03 2007.

[21] Oak Ridge National Laboratory. Resources - na-
tional center for computational sciences (nccs).
http://info.nccs.gov/resources/jaguar, June 2007.

[22] Yudan Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon,
M. Paun, and Stephen Scott. A reliability-aware approach
for an optimal checkpoint/restart model in hpc environments.
Cluster Computing, 2007 IEEE International Conference on,
pages 452–457, Sept. 2007.

[23] Dejan S. Milojicic, Fred Douglis, Yves Paindaveine, Richard
Wheeler, and Songnian Zhou. Process migration.ACM Com-
puting Surveys (CSUR), 32(3):241–299, 2000.

[24] Nichamon Naksinehaboon, Yudan Liu, Chokchai (Box)
Leangsuksun, Raja Nassar, Mihaela Paun, and Stephen L.
Scott. Reliability-aware approach: An incremental check-
point/restart model in hpc environments. InCCGRID ’08:
Proceedings of the 2008 Eighth IEEE International Sympo-
sium on Cluster Computing and the Grid (CCGRID), pages
783–788, Washington, DC, USA, 2008. IEEE Computer So-
ciety.

[25] A. Oliner, R. Sahoo, J. Moreira, M. Gupta, and A. Sivasubra-
maniam. Fault-aware job scheduling for bluegene/l systems.
In International Parallel and Distributed Processing Sympo-
sium, 2004.

[26] Ian Philp. Software failures and the road to a petaflop ma-
chine. InHPCRI: 1st Workshop on High Performance Com-
puting Reliability Issues, in Proceedings of the 11th Interna-
tional Symposium on High Performance Computer Architec-
ture (HPCA-11). IEEE Computer Society, 2005.

[27] Michael L. Powell and Barton P. Miller. Process migration
in DEMOS/MP. InSymposium on Operating Systems Prin-
ciples, pages 110–119, October 1983.

[28] M. Rosenblum and J. K. Ousterhout. The design and imple-
mentation of a log-structured file system. InACM Trans. on
Computer Systems, Vol. 10, No. 1, February 1992.

[29] R. Sahoo, A. Oliner, I. Rish, M. Gupta, J. Moreira, S. Ma,
R. Vilalta, and A. Sivasubramaniam. Critical event predic-
tion for proactive management in large-scale computer clus-
ters. InKDD ’03: Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data
mining, pages 426–435, 2003.

[30] Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, An-
drew Lumsdaine, Jason Duell, Paul Hargrove, and Eric Ro-
man. The LAM/MPI checkpoint/restart framework: System-
initiated checkpointing. InProceedings, LACSI Symposium,
October 2003.

[31] Jeffrey M. Squyres and Andrew Lumsdaine. A Component
Architecture for LAM/MPI. InEuropean PVM/MPI Users’
Group Meeting, number 2840 in Lecture Notes in Computer
Science, pages 379–387, Venice, Italy, September / October
2003. Springer-Verlag.

[32] G. Stellner. CoCheck: checkpointing and process migration
for MPI. In IEEE, editor,Proceedings of IPPS ’96. The
10th International Parallel Processing Symposium: Hon-
olulu, HI, USA, 15–19 April 1996, pages 526–531, 1109
Spring Street, Suite 300, Silver Spring, MD 20910, USA,
1996. IEEE Computer Society Press.

[33] J. Varma, C. Wang, F. Mueller, C. Engelmann, and S. L.
Scott. Scalable, fault-tolerant membership for MPI tasks on
hpc systems. InInternational Conference on Supercomput-
ing, pages 219–228, June 2006.

11



[34] C. Wang, F. Mueller, C. Engelmann, and S. Scott. A job
pause service under LAM/MPI+BLCR for transparent fault
tolerance. InInternational Parallel and Distributed Process-
ing Symposium, April 2007.

[35] C. Wang, F. Mueller, C. Engelmann, and S. Scott. Proactive
process-level live migration in hpc environments. InSuper-
computing, 2008.

[36] Andrew Wissink, Richard Hornung, Scott Kohn, and Steve
Smith. Large scale parallel structured amr calculations using
the samrai framework. InSupercomputing, November 2001.

[37] F. Wong, R. Martin, R. Arpaci-Dusseau, and D. Culler. Ar-
chitectural requirements and scalability of the NAS parallel
benchmarks. InSupercomputing, 1999.

[38] Sangho Yi, Junyoung Heo, Yookun Cho, and Jiman Hong.
Adaptive page-level incremental checkpointing based on ex-
pected recovery time. InSAC ’06: Proceedings of the 2006
ACM symposium on Applied computing, pages 1472–1476,
New York, NY, USA, 2006. ACM.

[39] John W. Young. A first order approximation to the optimum
checkpoint interval.Commun. ACM, 17(9):530–531, 1974.

12


