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Outline 
•  Problem Space 
-  The shrinking memory per FLOP 

•  Opportunity: NVM in HPC machines 

•  Approach 
-  NVMalloc: Enable the use of an NVM store as a 

secondary memory partition 

•  Results 
- Out-of-Core Analytics on NVM 
- More memory than what is physically available 
-  Applications can explicitly control data placement 
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Problem Space: The Shrinking Memory-
to-FLOP Ratio 
•  DRAM is an expensive resource in the HPC 

landscape 
-  Consumes a significant fraction of the multi-million 

dollar supercomputer budget 
-  Large-scale machines have a lot of memory (Titan: 

600TB, Tianhe-1A: 229TB) 
•  The int’l exascale roadmap projects: 
-  2015: 100-300 PF, O(1M) cores with 5PB of DRAM 
-  2018: 1EF, O(100M) cores with 60PB of DRAM 

•  However, HPC applications are ever more memory 
hungry! 

-  Significant contributor to the machine’s power budget 
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Problem Space: The Shrinking Memory-
to-FLOP Ratio 
•  Memory-to-FLOP ratio is steadily declining 
-  From 0.85 in 1997 to 0.01 for the projected exaflop 

machine in 2018 (Top500) 
-  Applications face the prospect of running wider and 

incur increased communication costs 
- Worse yet, incur increased allocation usage 
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Opportunity: NVM in HPC Machines 
•  Advent of non-volatile memory 
-  Pros: Low cost, high power efficiency and high capacity 
-  Cons: high latency, access granularity and lifetime limit 

their use as a substitute for main memory 
•  Supercomputers beginning to adopt first-

generation, block-based NVM 
-  Tsubame2, Gordon 
-  Potential use 

•  Checkpoint burst buffers 
•  In-situ analytics on SSD-based staging ground 

-  Can also play a significant role in extending memory 
capacity 
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Cost/Performance Tradeoffs 

•  Block-based, first-generation NVM: 
-  PCIe NVM offers lower latency and higher throughput 
-  Higher-end PCIe FusionIO offers high throughput, but also expensive 

•  Byte-addressable, second-generation NVM: 
-  PCM currently 2 and 2000x slower than DRAM for reads and writes 
-  In the future, it will only be 2 and 17x slower 
-  However, still not ready for production deployment 

•  PCM on DIMMS not prototyped beyond 64MB; PCM on PCIe allows 
larger capacity, but slower 

Device Interface Read (MB/s) Write (MB/s) Latency Capacity 
(GB) 

Enduran
ce 

Cost ($) 

Intel X25 SATA 250 170 75us 32 104-105 589 

Fusion IO PCIe 1500 1000 30us 640 104-105 15,378 

OCZ Revo PCIe 540 480 240 104-105 531 

Memory DIMM 13,107 13,107 10-14ns 16 > 1016 < 150 

PCM DIMM 115ns, 120us 64MB 106 

PCM PCIe 4096 400 5us, 150us 512 
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NVM as Memory Extension 

•  NVM as a swap device? 
•  NVM can help re-enable virtual memory on 

supercomputers 
-  Traditionally turned off as HPC machines do not have 

node-local disks due to failure concerns 
•  NVM has desirable properties compared disks 

-  Needs OS support 
-  Can cause jitter for HPC applications 
-  A straightforward use of NVM as a swap device cannot 

accommodate tiers of NVM 
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Approach: NVMalloc Library 
•  Can we expose the NVM explicitly as a secondary, 

but slower memory partition for applications? 
-  Potentially better performance 
-  Greater degree of control in allowing apps to dictate data 

placement 
•  NVM for operations that exploit inherent device strengths 
•  E.g., write-once-read-many variables 

-  Can revitalize out-of-core computation on large-scale 
machines 

•  A suite of services for client applications to explicitly 
allocate and manipulate memory regions from a 
distributed NVM store 
-  The library exploits the memory-mapped I/O interface atop 

a distributed NVM store 
-  Realistic deployment scenario of first-generation NVM in 

supercomputers makes this a non-trivial problem 
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Background: Aggregate NVM Store 

ICDCS’11, ICDCS’08 
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Aggregate NVM Store Performance 

•  MPI job: 1800 clients, 0.25GB/client 
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NVMalloc Goals 

•  Provide explicit control to applications via familiar 
interfaces 

•  Transparent access to local and remote NVM alike 

•  Bridging byte-addressability and block storage 

•  Optimizing NVM performance and lifetime 

•  Ability to seamlessly checkpoint the memory-mapped 
variable 
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Architecture Overview 
•  Efforts on two fronts: 
-  NVMalloc middleware layer: suite of services 
-  Distributed NVM storage: make it amenable to NVMalloc 

•  Each compute node has: 
-  Out-of-core application that uses NVMalloc to allocate 

memory for certain variables or for more physical memory 
-  NVMalloc middleware layer 

•  Memory-mapped interface, ssdmalloc(), ssdfree(), 
ssdcheckpoint() services 

-  FUSE layer 
•  Aggregate NVM made mountable, caching of chunks 

•  Aggregate NVM storage is the lowest layer 
-  Abstracts compute node-local and remote NVM devices 
-  Aggregated from a subset of node-local NVM or “fat” nodes 
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NVMalloc Architecture 
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Memory Mapping Files on the Distributed 
NVM Storage 
•  Thematic to ssdmalloc() and ssdfree() is the POSIX mmap() 
-  mmap(): files or devices to be mapped onto memory address space 
-  Our FUSE layer allows /mnt/AggregateNVM 
-  File, /mnt/AggregateNVM/MoreMem is striped on the distributed 

NVM as 256KB chunks 
-  Pseudocode for ssdmalloc() for the out-of-core variable, nvmVar 

•  fd = open(“/mnt/AggregateNVM/MoreMem”…) 
•  nvmVar = mmap(.., len, prot, flags, fd, offset) 
•  Address, [nvmVar, nvmVar + len -1], is legitimate; range of bytes into the 

file from [offset, offset + len – 1] 

•  Modifications to the distributed NVM store 
-  O_RDWR flag on the distributed NVM store to support mmap 
-  For ssdmalloc(5GB), the NVM store does file creation as follows: 

•  File creation is a space reservation on the backend store using 
posix_fallocate() 

•  Manager: generates a stripe width of benefactors, deducts available 
space and creates appropriate file metadata 

-  Data transfers occur on mmap reads/writes to the virtual address 
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Semantics of the memory-mapped file 
•  File, MoreMem, is internal to the aggregate NVM  
-  Application is only aware of nvmVar 
-  The variable needs to be freed using ssdfree(), which 

uses munmap() underneath 
•  Correspondingly, “MoreMem” will be deleted 

-  If not freed explicitly, this can create orphaned files 

•  To address this, we can introduce “lifetime” 
metadata for memory-mapped variables 
-  Space may be reclaimed on the NVM store if lifetime 

has expired 
-  Can aid in data sharing between a workflow of jobs or 

a simulation and its in-situ data analysis 
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Bridging the Granularity Gap 
•  Byte-by-byte memory accesses and larger blocks of the 

distributed NVM store (256KB chunks) 
•  Use FUSE layer cache to optimize reads/writes 
-  Cache size tunable, but should not consume too much DRAM 
-  Reads: “x = nvmVar[i]” 

•  Resolved by mmap to a read call for “offset + i” into “MoreMem” 
•  Read implementation for distributed NVM within FUSE 

-  Requests manager for the benefactor with the chunk 
-  Retrieve a 256KB chunk 

•  Caching of chunks in FUSE can significantly improve data reuse 

-  Writes: “nvmVar[i] = x” 
•  Chunk to be updated is fetched from the benefactor into the 

FUSE cache, in case of a “cache miss” 
•  OS page cache sends writes to FUSE on a page granularity 

-  256KB chunk includes 64 pages (4KB)  
•  Page marked “dirty” in the FUSE cache 
•  FUSE cache (64MB) is managed using LRU 
•  Dirty pages within old chunks are evicted first 
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Seamless Checkpointing of DRAM and 
NVM-allocated Variables 
•  ssdcheckpoint() service 
-  Copies entire DRAM state into aggregate NVM, followed by 

NVM-allocated variables 
•  DRAM-resident variables  CheckpointFilet  chunks {a, b, 

c} on aggregate NVM 
•  NVM-allocated variable, nvmVar  MoreMem  chunks {d, 

e, f} 
•  CheckpointFilet  chunks {a, b, c, d, e, f} on aggregate NVM 

-  Copy on write scheme to allow edits to nvmVar between 
checkpoints, but yet not alter CheckpointFilet 
•  Chunk “e” modified: nvmVar  MoreMem  {d, e’, f} 
•  CheckpointFilet+1  chunks {DRAM + {d, e’, f}} 
•  Checkpoints files and NVM-allocated variables can share 

chunks and yet retain the ability to modify the memory-
mapped variable between checkpoints 
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Testbed Configuration 

Type HAL Cluster 
Compute Nodes 16 
Cores per node 8 
Processor (GHz) 2.4 
Memory per node 

(GB) 
8 

SATA SSD Model Intel X-25E, 32GB 
Network Bonded Dual 

Gigabit Ethernet 
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Out-of-Core Matrix Multiplication 

•  L-SSD(2:16:16) is only 2.19% worse than DRAM only 
•  L-SSD(8:16:16) is 53.75% better than DRAM only 
•  L-SSD(8:8:8) and R-SSD(8:8:8) are comparable 
•  R-SSD(8:8:1) achieves 32.47% improvement compared to DRAM, 

while running on half the nodes and with a single $300 SSD 
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MM with 8GB Matrix Size 
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Row-major versus Column-major 
Placement 
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Data Exchanged between Application, 
FUSE and SSD 

Access Pattern 
of B 

Aggregated 
Accesses to B 

(GB) 

Request to FUSE 
(GB) 

Request to SSD 
(GB) 

Row-major 256 4 2 
Column-major 256 113 130 

•  Data read during the compute phase for L-
SSD(8:16:16) 
-  SSD access latency can be effectively hidden by 

caching within NVMalloc 
-  Requires good access locality (row-major) 
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MPI-based Quicksort using NVMalloc 

•  Problem: 200GB dataset to be sorted on a system with 128GB of 
physical memory 

•  DRAM(8:16:0): not enough memory to load all the dataset 
•  L-SSD(8:16:16) is a hybrid DRAM+SSD configuration with 100GB on 

each 
•  R-SSD(8:8:8) is also hybrid with 50GB on DRAM and 150GB on the 

SSD store 
•  Results: 

-  L-SSD offers 10x speedup compared to DRAM due to the two passes 
required to solve the problem with significant data exchange 

-  R-SSD is slower than L-SSD since it has half the number of nodes with 
double the workload 

-  Can solve problems larger than what the physical memory allows without re-
engineering the code 

Quicksort DRAM(8:16:0) L-SSD(8:16:16) R-SSD(8:8:8) 
Time (sec) 1148.82 100.57 301.24 

No of passes 2 1 1 
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Write Optimization within NVMalloc 

•  Synthetic benchmark 
-  Random writes to a 2GB dataset on NVM; 128K times 
- Writes issued byte-by-byte 

•  Result 
-  For each byte, instead of writing the entire 256KB 

chunk, writing only dirty pages (4KB) significantly 
reduces traffic between FUSE and NVM 

Write 
optimization 

Data written to 
FUSE 

Data Written to 
NVM 

w/ optimization 467 MB 504 MB 
w/o optimization 471 MB 19.3 GB 
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In Summary 

•  Rationale, design and implementation for NVMalloc 
-  A runtime library atop a distributed NVM store 
-  Seamless use of local/remote NVM 
-  Bridging memory accesses and large block accesses 

•  We have shown how NVMalloc can enable cost-
effective parallel computation by 
-  Utilizing multiple cores more efficiently for data-intensive 

applications 
-  Computing problem size much larger than what the 

physical memory permits 
•  Re-vitalize out-of-core computations 
•  http://www.csm.ornl.gov/~vazhkuda/Storage 
•  vazhkudaiss@ornl.gov 


