
OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Chao Wang, Sudharshan S. Vazhkudai, Xiaosong Ma,

Fei Meng, Youngjae Kim and Christian Engelmann

Oak Ridge National Laboratory

North Carolina State University

IPDPS 2012

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Outline
•  Problem Space
-  The shrinking memory per FLOP

•  Opportunity: NVM in HPC machines

•  Approach
-  NVMalloc: Enable the use of an NVM store as a

secondary memory partition

•  Results
- Out-of-Core Analytics on NVM
- More memory than what is physically available
-  Applications can explicitly control data placement

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Problem Space: The Shrinking Memory-
to-FLOP Ratio
•  DRAM is an expensive resource in the HPC

landscape
-  Consumes a significant fraction of the multi-million

dollar supercomputer budget
-  Large-scale machines have a lot of memory (Titan:

600TB, Tianhe-1A: 229TB)
•  The int’l exascale roadmap projects:
-  2015: 100-300 PF, O(1M) cores with 5PB of DRAM
-  2018: 1EF, O(100M) cores with 60PB of DRAM

•  However, HPC applications are ever more memory
hungry!

-  Significant contributor to the machine’s power budget

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Problem Space: The Shrinking Memory-
to-FLOP Ratio
•  Memory-to-FLOP ratio is steadily declining
-  From 0.85 in 1997 to 0.01 for the projected exaflop

machine in 2018 (Top500)
-  Applications face the prospect of running wider and

incur increased communication costs
- Worse yet, incur increased allocation usage

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Opportunity: NVM in HPC Machines
•  Advent of non-volatile memory
-  Pros: Low cost, high power efficiency and high capacity
-  Cons: high latency, access granularity and lifetime limit

their use as a substitute for main memory
•  Supercomputers beginning to adopt first-

generation, block-based NVM
-  Tsubame2, Gordon
-  Potential use

•  Checkpoint burst buffers
•  In-situ analytics on SSD-based staging ground

-  Can also play a significant role in extending memory
capacity

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Cost/Performance Tradeoffs

•  Block-based, first-generation NVM:
-  PCIe NVM offers lower latency and higher throughput
-  Higher-end PCIe FusionIO offers high throughput, but also expensive

•  Byte-addressable, second-generation NVM:
-  PCM currently 2 and 2000x slower than DRAM for reads and writes
-  In the future, it will only be 2 and 17x slower
-  However, still not ready for production deployment

•  PCM on DIMMS not prototyped beyond 64MB; PCM on PCIe allows
larger capacity, but slower

Device Interface Read (MB/s) Write (MB/s) Latency Capacity
(GB)

Enduran
ce

Cost ($)

Intel X25 SATA 250 170 75us 32 104-105 589

Fusion IO PCIe 1500 1000 30us 640 104-105 15,378

OCZ Revo PCIe 540 480 240 104-105 531

Memory DIMM 13,107 13,107 10-14ns 16 > 1016 < 150

PCM DIMM 115ns, 120us 64MB 106

PCM PCIe 4096 400 5us, 150us 512

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

NVM as Memory Extension

•  NVM as a swap device?
•  NVM can help re-enable virtual memory on

supercomputers
-  Traditionally turned off as HPC machines do not have

node-local disks due to failure concerns
•  NVM has desirable properties compared disks

-  Needs OS support
-  Can cause jitter for HPC applications
-  A straightforward use of NVM as a swap device cannot

accommodate tiers of NVM

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Approach: NVMalloc Library
•  Can we expose the NVM explicitly as a secondary,

but slower memory partition for applications?
-  Potentially better performance
-  Greater degree of control in allowing apps to dictate data

placement
•  NVM for operations that exploit inherent device strengths
•  E.g., write-once-read-many variables

-  Can revitalize out-of-core computation on large-scale
machines

•  A suite of services for client applications to explicitly
allocate and manipulate memory regions from a
distributed NVM store
-  The library exploits the memory-mapped I/O interface atop

a distributed NVM store
-  Realistic deployment scenario of first-generation NVM in

supercomputers makes this a non-trivial problem

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Background: Aggregate NVM Store

ICDCS’11, ICDCS’08

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Aggregate NVM Store Performance

•  MPI job: 1800 clients, 0.25GB/client

0

10

20

30

40

50

60

50 100 150 200 250 300 350 400

I/O
 B

an
dw

id
th

 (G
B

/s
)

Memory Size (GB)

450GB dataset 290GB dataset

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

NVMalloc Goals

•  Provide explicit control to applications via familiar
interfaces

•  Transparent access to local and remote NVM alike

•  Bridging byte-addressability and block storage

•  Optimizing NVM performance and lifetime

•  Ability to seamlessly checkpoint the memory-mapped
variable

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Architecture Overview
•  Efforts on two fronts:
-  NVMalloc middleware layer: suite of services
-  Distributed NVM storage: make it amenable to NVMalloc

•  Each compute node has:
-  Out-of-core application that uses NVMalloc to allocate

memory for certain variables or for more physical memory
-  NVMalloc middleware layer

•  Memory-mapped interface, ssdmalloc(), ssdfree(),
ssdcheckpoint() services

-  FUSE layer
•  Aggregate NVM made mountable, caching of chunks

•  Aggregate NVM storage is the lowest layer
-  Abstracts compute node-local and remote NVM devices
-  Aggregated from a subset of node-local NVM or “fat” nodes

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

NVMalloc Architecture

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Memory Mapping Files on the Distributed
NVM Storage
•  Thematic to ssdmalloc() and ssdfree() is the POSIX mmap()
-  mmap(): files or devices to be mapped onto memory address space
-  Our FUSE layer allows /mnt/AggregateNVM
-  File, /mnt/AggregateNVM/MoreMem is striped on the distributed

NVM as 256KB chunks
-  Pseudocode for ssdmalloc() for the out-of-core variable, nvmVar

•  fd = open(“/mnt/AggregateNVM/MoreMem”…)
•  nvmVar = mmap(.., len, prot, flags, fd, offset)
•  Address, [nvmVar, nvmVar + len -1], is legitimate; range of bytes into the

file from [offset, offset + len – 1]

•  Modifications to the distributed NVM store
-  O_RDWR flag on the distributed NVM store to support mmap
-  For ssdmalloc(5GB), the NVM store does file creation as follows:

•  File creation is a space reservation on the backend store using
posix_fallocate()

•  Manager: generates a stripe width of benefactors, deducts available
space and creates appropriate file metadata

-  Data transfers occur on mmap reads/writes to the virtual address

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Semantics of the memory-mapped file
•  File, MoreMem, is internal to the aggregate NVM
-  Application is only aware of nvmVar
-  The variable needs to be freed using ssdfree(), which

uses munmap() underneath
•  Correspondingly, “MoreMem” will be deleted

-  If not freed explicitly, this can create orphaned files

•  To address this, we can introduce “lifetime”
metadata for memory-mapped variables
-  Space may be reclaimed on the NVM store if lifetime

has expired
-  Can aid in data sharing between a workflow of jobs or

a simulation and its in-situ data analysis

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Bridging the Granularity Gap
•  Byte-by-byte memory accesses and larger blocks of the

distributed NVM store (256KB chunks)
•  Use FUSE layer cache to optimize reads/writes
-  Cache size tunable, but should not consume too much DRAM
-  Reads: “x = nvmVar[i]”

•  Resolved by mmap to a read call for “offset + i” into “MoreMem”
•  Read implementation for distributed NVM within FUSE

-  Requests manager for the benefactor with the chunk
-  Retrieve a 256KB chunk

•  Caching of chunks in FUSE can significantly improve data reuse

-  Writes: “nvmVar[i] = x”
•  Chunk to be updated is fetched from the benefactor into the

FUSE cache, in case of a “cache miss”
•  OS page cache sends writes to FUSE on a page granularity

-  256KB chunk includes 64 pages (4KB)
•  Page marked “dirty” in the FUSE cache
•  FUSE cache (64MB) is managed using LRU
•  Dirty pages within old chunks are evicted first

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Seamless Checkpointing of DRAM and
NVM-allocated Variables
•  ssdcheckpoint() service
-  Copies entire DRAM state into aggregate NVM, followed by

NVM-allocated variables
•  DRAM-resident variables  CheckpointFilet  chunks {a, b,

c} on aggregate NVM
•  NVM-allocated variable, nvmVar  MoreMem  chunks {d,

e, f}
•  CheckpointFilet  chunks {a, b, c, d, e, f} on aggregate NVM

-  Copy on write scheme to allow edits to nvmVar between
checkpoints, but yet not alter CheckpointFilet
•  Chunk “e” modified: nvmVar  MoreMem  {d, e’, f}
•  CheckpointFilet+1  chunks {DRAM + {d, e’, f}}
•  Checkpoints files and NVM-allocated variables can share

chunks and yet retain the ability to modify the memory-
mapped variable between checkpoints

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Testbed Configuration

Type HAL Cluster
Compute Nodes 16
Cores per node 8
Processor (GHz) 2.4
Memory per node

(GB)
8

SATA SSD Model Intel X-25E, 32GB
Network Bonded Dual

Gigabit Ethernet

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Out-of-Core Matrix Multiplication

•  L-SSD(2:16:16) is only 2.19% worse than DRAM only
•  L-SSD(8:16:16) is 53.75% better than DRAM only
•  L-SSD(8:8:8) and R-SSD(8:8:8) are comparable
•  R-SSD(8:8:1) achieves 32.47% improvement compared to DRAM,

while running on half the nodes and with a single $300 SSD

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

MM with 8GB Matrix Size

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Row-major versus Column-major
Placement

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Data Exchanged between Application,
FUSE and SSD

Access Pattern
of B

Aggregated
Accesses to B

(GB)

Request to FUSE
(GB)

Request to SSD
(GB)

Row-major 256 4 2
Column-major 256 113 130

•  Data read during the compute phase for L-
SSD(8:16:16)
-  SSD access latency can be effectively hidden by

caching within NVMalloc
-  Requires good access locality (row-major)

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

MPI-based Quicksort using NVMalloc

•  Problem: 200GB dataset to be sorted on a system with 128GB of
physical memory

•  DRAM(8:16:0): not enough memory to load all the dataset
•  L-SSD(8:16:16) is a hybrid DRAM+SSD configuration with 100GB on

each
•  R-SSD(8:8:8) is also hybrid with 50GB on DRAM and 150GB on the

SSD store
•  Results:

-  L-SSD offers 10x speedup compared to DRAM due to the two passes
required to solve the problem with significant data exchange

-  R-SSD is slower than L-SSD since it has half the number of nodes with
double the workload

-  Can solve problems larger than what the physical memory allows without re-
engineering the code

Quicksort DRAM(8:16:0) L-SSD(8:16:16) R-SSD(8:8:8)
Time (sec) 1148.82 100.57 301.24

No of passes 2 1 1

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Write Optimization within NVMalloc

•  Synthetic benchmark
-  Random writes to a 2GB dataset on NVM; 128K times
- Writes issued byte-by-byte

•  Result
-  For each byte, instead of writing the entire 256KB

chunk, writing only dirty pages (4KB) significantly
reduces traffic between FUSE and NVM

Write
optimization

Data written to
FUSE

Data Written to
NVM

w/ optimization 467 MB 504 MB
w/o optimization 471 MB 19.3 GB

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

In Summary

•  Rationale, design and implementation for NVMalloc
-  A runtime library atop a distributed NVM store
-  Seamless use of local/remote NVM
-  Bridging memory accesses and large block accesses

•  We have shown how NVMalloc can enable cost-
effective parallel computation by
-  Utilizing multiple cores more efficiently for data-intensive

applications
-  Computing problem size much larger than what the

physical memory permits
•  Re-vitalize out-of-core computations
•  http://www.csm.ornl.gov/~vazhkuda/Storage
•  vazhkudaiss@ornl.gov

