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Abstract

As the number of nodes in high-performance computing environments keeps increas-
ing, faults are becoming common place. Reactive fault tolerance (FT) often does not
scale due to massive I/O requirements and relies on manual job resubmission.

This work complements reactive with proactive FT at the process level. Through
health monitoring, a subset of node failures can be anticipated when one’s health deteri-
orates. A novel process-level live migration mechanism supports continued execution
of applications during much of processes migration. This scheme is integrated into
an MPI execution environment to transparently sustain health-inflicted node failures,
which eradicates the need to restart and requeue MPI jobs. Experiments indicate that
1-6.5 seconds of prior warning are required to successfully trigger live process migra-
tion while similar operating system virtualization mechanisms require 13-24 seconds.
This self-healing approach complements reactive FT by nearly cutting the number of
checkpoints in half when 70% of the faults are handled proactively. The work also
provides a novel back migration approach to eliminate load imbalance or bottlenecks
caused by migrated tasks. Experiments indicate the larger the amount of outstanding
execution, the higher the benefit due to back migration will be.

Keywords: Live Migration, Back Migration, Fault Tolerance, High-Performance
Computing, Health Monitoring

1. Introduction

The current trend in high-performance computing (HPC) is to continually increase
the system scale through ever larger number of nodes, each of them consisting of multi-
core processors, exceeding the 100,000 processor mark. This substantial system growth
poses a challenge in terms of the failure probability for large-scale jobs.

Reliability data of contemporary systems, depicted in Table 1, illustrates that the
mean time between failures (MTBF) / interrupts (MTBI) is in the range of 6.5-40 hours,
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depending on the maturity / age of the installation [1]. The most common causes of fail-
ure are processor, memory and storage errors / failures. When extrapolating for current
systems, the mean-time between failures (MTBF) for peta-scale systems is predicted to
be as short as 1.25 hours [2] and could be accompanied by one radiation-induced soft
error once every 1.5 hours [3]. With current checkpoint/restart (C/R) technology, the
wall-clock time of a 100-hour job could well extend to 251 hours due to C/R overhead
implying that 60% of cycles are spent on C/R alone [2]. At next-generation extreme
scales, future chips are expected to keep failure rates per bit similar to that of current
systems [4]. However, the component count will dramatically increase, which leads to
a much lower system MTBF.

System # CPUs MTBF/I
ASCI Q 8,192 6.5 hrs

ASCI White 8,192 5/40 hrs (’01/’03)
PSC Lemieux 3,016 9.7 hrs

Google 15,000 20 reboots/day

Table 1: Reliability of HPC Clusters
Yet, when fault-tolerant middleware hides such failures and user services remain

unaffected, the interpolated fault rate is just over one hour for equivalent number of
nodes (c.f. Google in Table 1) [5]. In this spirit, our work focuses on fault-tolerant
middleware for HPC systems. More specifically, this paper promotes process-level
live migration combined with health monitoring for a proactive fault tolerance (FT)
approach that complements existing C/R schemes with self healing whose fault model
is based on the work by Tikotekar et al. [6].

Health monitoring has recently become a wide-spread feature in commodity and,
even more so, in server and HPC components. Such monitors range from simple pro-
cessor temperature sensors to baseboard management cards (BMCs) with a variety
of sensing capabilities, including fan speeds, voltage levels and chassis temperatures.
Similarly, the SMART disk standard provides the means to trigger events upon disk
errors indicating disk problems, which can be saved in log files or which can trigger
exception handling mechanisms. Aided by such capabilities, node failures may be
anticipated when the health status of a node deteriorates, i.e., when abnormal sensor
readings or log entries are observed.

Health monitoring has been used to model failure rates and, in a reactive manner,
to determine checkpoint intervals [7, 8]. In this work, we venture beyond reactive
schemes by promoting a proactive approach that migrates processes away from “un-
healthy” nodes to healthy ones. Such a self-healing approach has the advantage that
checkpoint frequencies can be reduced as sudden, unexpected faults should become
the exception. This requires the availability of spare nodes, which is becoming com-
mon place in recent cluster acquisitions. Current extensions of resource managers are
considering (a) a pool of spare nodes as part of a job allocation request and (b) a
shared pool of spare nodes between jobs [9]. Nodes from any of these pools can be dy-
namically requested by a node’s MPI daemon, which can then readily utilize our task
interpositioning layer to replace a failed node with a spare in a transparent manner to
the application. Contention for spare nodes is handled by MPI daemons on the spares
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that forward requests among each other using a dynamically reshaped radix tree for
scalability [10]. This approach is much easier to implement that any active or passive
replication scheme as it, in contrast to replication, does not require additional messages
prior to fault recovery. Furthermore, the number of spare nodes is typically a small con-
stant while replication strategies may require two times the number of nodes for a given
job [11]. Our techniques also generalize to task sharing on a node should not enough
spare nodes be available, yet the cost is reduced performance for tasks on such shared
nodes. This may result in load imbalance between tasks system-wide resulting in de-
creased overall performance. Such imbalance might be tolerable when faulty nodes
can be brought back online quickly so that processes can migrate back to their original
nodes. Other problem sources besides fail-stop node or link failures, such as silent data
corruption, e.g., due to radiation-inflicted bit flips, are not considered by this work.

The feasibility of health monitoring at various levels has recently been demon-
strated for temperature-aware monitoring, e.g., by using ACPI [12], and, more generi-
cally, by critical-event prediction [13]. Particularly in systems with thousands of pro-
cessors, fault handling becomes imperative, yet approaches range from application-
level and runtime-level to the level of OS schedulers [14, 15, 16, 17]. These and other
approaches differ from our work in that we promote live migration combined with
health monitoring.

Contributions: We have designed an automatic and transparent mechanism for
proactive FT of arbitrary MPI applications. The implementation, while realized over
LAM/MPI’s C/R support [18] through Berkeley Labs C/R (BLCR) [19], is in its mech-
anisms applicable to any process-migration solution, e.g., the Open MPI FT mecha-
nisms [20, 21]. BLCR is an open source, system-level C/R implementation integrated
with LAM/MPI via a callback function. The original LAM/MPI+BLCR combination
[22] only provides reactive FT and requires a complete job restart from the last check-
point including job resubmission in case of a node failure. Recent work enhances this
capability with a job pause/continue mechanism that keeps an MPI job alive while a
failed node is replaced by a spare node [23]. Paused, healthy tasks are rolled back to
and spare nodes proceed from the last checkpoint in a coordinated manner transparent
to the application.

Another contribution of this paper is to avoid roll-backs to prior checkpoints when-
ever possible. By monitoring the health of each node, a process is migrated as a precau-
tion to potentially imminent failure. To reduce the impact of migration on application
performance, we contribute a novel process-level live migration mechanism as an en-
hancement to the Linux BLCR module. Thus, execution proceeds while a process
image is incrementally and asynchronously transferred to a spare node. This reduces
the time during which the process is unresponsive to only a short freeze phase when
final changes are transferred to the spare node before re-activating execution on the
target node. Hence, MPI applications execute during much of process migration. In
experiments, we assessed the trade-off between lower end-to-end wall-clock times of
jobs subject to live migration vs. the slightly prolonged duration for migration as op-
posed to a traditional process-freeze approach. Depending on the estimated remaining
up-time of a node with deteriorating health, one can choose between live and frozen
migration schemes.

Our results further demonstrate that proactive FT complements reactive schemes
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for long-running MPI jobs. Specifically, should a node fail without prior health indi-
cation or while proactive migration is in progress, our scheme reverts to reactive FT
by restarting from the last checkpoint. Yet, as proactive FT has the potential to pro-
long the mean-time-to-failure, reactive schemes can lower their checkpoint frequency
in response, which implies that proactive FT can lower the cost of reactive FT. More
specifically, experimental results indicate that 1-6.5 seconds of prior warning are re-
quired to successfully trigger live process migration while similar operating system
(OS) virtualization mechanisms require 13-24 seconds. The approach further comple-
ments reactive FT by allocating nearly twice as long a checkpointing interval due to
proactive migration when 70% of the failures are predicted only a few seconds prior
(derived from [13]).

A migrated task could present a bottleneck due to (1) increased hop counts for
communication from/to the spare node, (2) reduced resources in heterogeneous clus-
ters (lower CPU/memory/network speed), or (3) placement of multiple MPI tasks on a
node if not enough spare nodes are available. We contribute back migration as a novel
methodology. We have implemented the back migration mechanism within LAM/MPI
and BLCR based on process-level live migration in reverse direction. Our results indi-
cate that we can benefit from back migration when, on average, 10.19% of execution
is still outstanding just for our set of benchmarks. For larger applications, benefits are
projected to occur for even smaller remaining amounts.

2. Design

The focus of this work are the design, implementation and evaluation of process-
level live migration mechanisms, including back migration. To this end, we assume the
availability of spare nodes as migration targets. We also note that globally coordinate
resilience schemes have proved to be feasible at scale as interconnects tend to provide
scalable interconnects, such as Cray’s hypercube topologies, or even special collective
interconnects, such as BlueGene’s trees for collectives and barriers (interrupt tree) [24].
This property will be exploited for draining messages across nodes during late phases
of migration. We further assume the availability of health monitoring with process-
level notification [25]. The technical details and overheads of health monitoring are
beyond of scope of this work, but we note that monitored health data tend to result
in predictions in the order of tends of minutes (fan speeds, temperatures) if not hours
or days (hard drive logs via SMART) in practice [26, 27]. As will be shown, such
predictions are more than sufficient to accommodate proactive actions.

Figure 1 depicts the system components and their interaction, i.e., the chronolog-
ical steps involved in process migration of each MPI job and job dependencies with
data exchanges. In the following, we discuss system support for live migration at two
levels: (1) the synchronization and coordination mechanisms within an MPI job and
(2) live migration with incremental update support at the process/MPI task level. We
further consider the tradeoff between live and frozen migration options and develop
approaches to manage “dirty” memory, i.e., memory written since the last incremental
update. We then analyze the mechanism for and assess the benefits of back migration.
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Figure 1: Job Live Migration

2.1. Live Migration at the Job Level
Figure 1 depicts steps 1-6, each of which are described in the following.
Step 1: Migration Trigger: In our system, the per-node health monitoring mech-

anism is realized on top of a Baseboard Management Controller (BMC). It is equipped
with sensors to monitor different properties, e.g., sensors providing data on temper-
ature, fan speed, and voltage. We also employ the Intelligent Platform Management
Interface (IPMI), an increasingly common management/monitoring component that
provides a standardized message-based interface to obtain sensors readings for health
monitoring. We further designed a decentralized scheduler, which can be deployed as
a stand-alone component or as an integral process of an MPI daemon, such as the LAM
daemon (lamd). The scheduler will be notified upon deteriorating health detected by
BMC/IPMI, e.g., due to a sensor reading exceeding a threshold value.

Step 2: Destination Node Determination: When the scheduler component on
the health-decaying node receives the early warning issued in step 1, it first chooses
a spare node as a replacement for the unhealthy node. For the current petascale and
next-generation exascale system with tens of thousands of nodes [28], allocating spare
nodes for fault tolerance turns to be inexpensive. We expect that job schedulers may
soon simply allocate a limited number of spares as a default or upon request during
job submission. As of now, we still have to explicitly over-provision by setting a con-
stant number of nodes aside during job submission. While performance impacts due to
different task placement after spare node utilization is beyond the scope of this paper,
we do note that current job scheduler do not perform communication-sensitive task
placement for specific interconnect topologies in first place. Furthermore, our back mi-
gration scheme (see Section 2.4 would restore original placements and thereby address
any future communication-sensitive placement.

These spare nodes comprise the destination for process migration. An alternative to
spare nodes is provisioning, which tends to result in benefits only when a faulty node
can be rebooted/replaced quickly or if an application run is close to completion. In
over-provisioning, we choose the most lightly loaded node as a migration destination
if its available memory space suffices for two task, in which case the node doubles for
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two MPI tasks. Sharing nodes may result in imbalance due to bearing twice the load of
regular nodes, which generally results in lower overall application performance. Such
imbalance might be tolerable when faulty nodes can be brought back online quickly so
that processes can migrate back to their original nodes (see back migration in Section
2.4). Nonetheless, higher sustained application performance can be guaranteed when
unloaded spares are available as migration targets.

Step 3: Memory Precopy: Once a destination node is determined, the scheduler
initiates the migration of a process on both destination and source nodes. The objective
of the first stage of migration is to transfer a memory snapshot of the process image
to the spare node, yet to allow the application to execute during this stage, hence the
name live migration. The transfer of the process image occurs at page granularity and
is repeated for pages written to by the application between image scans. During the
first process image scan (first iteration), all non-zero pages are transferred from the
source node to the destination node. On subsequent scans/iterations, only the pages
updated since the previous scan are transferred. When the number of such “dirty”
pages between scans does not change significantly anymore, the scan loop terminates.
System support for tracking dirty pages is discussed later in the context of memory
management.

Step 4: In-flight Message Drainage: Before we stop the process and migrate the
remaining dirty pages with the corresponding process state to the destination node,
all MPI tasks need to coordinate to reach a consistent global state. Based on our
LAM/MPI+BLCR design, message passing is dealt with at the MPI level while the
process-level BLCR mechanism is not aware of messaging at all. Hence, we employ
LAM/MPI’s job-centric interaction mechanism for the respective MPI tasks to clear
in-flight data in the MPI communication channels.

Step 5: Stop&Copy: Once all the MPI tasks (processes) reach a consistent global
state, the process on the source node freezes (suspends) application execution but still
copies the remaining dirty pages (written to since the last iteration in step 3) and the
final process state (registers, signal information, pid, files etc.) to the destination node.
All other MPI tasks are suspended at their point of execution.

Step 6: Connection Recreation, Messages Restoration and Job Continuation:
When the process is ready on the destination node, it sets up a communication channel
with all other MPI tasks. Subsequently, the drained in-flight messages are restored, and
all the processes resume execution from the point of suspension.

Discussion: Our approach is conservative in draining messages of all MPI tasks
(step 4). It would be sufficient to only drain messages of the subset of tasks that com-
municate with the process subject to migration. However, this would require other
tasks to receive two notifications, one on the migration intent and another on migra-
tion completion. Nonetheless, the migrating node would only proceed after receiving
responses from all others that their messages are drained. In our experiments, the mi-
grating node was always the bottleneck. Hence, any attempts to allow other nodes to
proceed without global coordination are likely to not result in any benefit since they
are not on the critical path.
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Figure 2: Process Migration with Precopy (Kernel Mode in Dotted Frame)

2.2. Live Migration at the Process Level

The incremental precopy and stop&copy (steps 3 and 5 in Figure 1) are performed
at the process level involving only the destination and source nodes. Yet, there are
trade-offs between simply stopping an application to engage in a frozen copy and the
alternative of a live precopy with continued application progress. The latter, while
generally resulting in shorter overall application wall-clock time, comes at the expense
of background network activity, possibly even repeatedly transmitting dirtied pages.
This also raises the question when the iterative precopy loop should terminate.

Figures 2 and 3 show migration with precopy (live) and without (stop&copy-only).
Compared to a traditional job resubmission resuming execution from the last check-
point in a reactive FT scheme, both of these proactive migration schemes lower the
expected execution time of the MPI application in the presence of failures. This is
especially the case for HPC environments where the MTBF is low, which typically im-
plies that the number of compute nodes is high, the run-time of an application is long,
and the memory footprint is large.

One of our objectives is to reduce the aggregate downtimes over all nodes, i.e.,
the duration of the stop&copy step should be small. Live migration with incremental
precopy results not only in shorter downtime on the local node (to transfer dirty pages
plus other process state) but also in reduced suspension of all other nodes (once MPI
message queues are drained) since fewer pages remain dirty after precopy. Another
objective is to tolerate the imminent fault. The shorter the migration duration, the
higher the probability that our proactive scheme makes a reactive restart from a prior
checkpoint unnecessary. Frozen migration consisting only of the stop&copy step takes
less overall time during migration, thereby increasing chances for successful migration.
A compromise might even be to stop the precopy step prematurely upon receipt of
another fault event indicating higher urgency of the health problem.
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Two major factors affect the tradeoff between the downtime and the migration du-
ration. First, the network bandwidth shared between the MPI job and the migration
activity is limited. If an application utilizes less network bandwidth, more bandwidth
can be consumed by the migration operation. Thus, the precopy step may only have
minimum impact on application progress. More communication-intensive applications,
however, may leave less unused bandwidth for live migration (during precopy). This
could both slow down a local MPI task (with potentially globally unbalanced progress
due to communication) and prolong precopy duration, ultimately requiring a premature
termination of this step. High-end HPC installations may provide multiple network
backbones to isolate MPI communication from I/O traffic, the latter of which covering
checkpointing and migration traffic as well. In such systems, bandwidth issues may
not be as critical (but cannot be fully discounted either).

Second, the page write rate (dirtying rate) affects the trade-off between downtime
and migration duration. The dirtying rate is affected by the memory footprint (more
specifically, the rewrite working set) of the application. A larger number of pages re-
peatedly written within a tight loop will prolong the precopy duration, which might
lower the probability for successful migration (compared to non-live migration). In
fact, the page access patterns of the studied benchmarks will be shown to differ signif-
icantly. We further discuss this issue in the experimental section.

2.3. Memory Management
A prerequisite of live migration is the availability of a mechanism to track mod-

ified pages during each iteration of the precopy loop. Two fundamentally different
approaches may be employed, namely page protection mechanisms or page-table dirty
bits. Different implementation variants build on these schemes, such as the bookkeep-
ing and saving scheme that, based on the dirty bit scheme, copies pages into a buffer
[29].

Under the page protection scheme, all writable pages of a process are write-protected
before each iteration occurs. When a page is modified (written to for the first time), a
page fault exception is raised. The triggered exception handler enables write access to
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the page and records the page as dirty. Upon return from the handler, the write access
is repeated successfully, and subsequent writes to the same page execute at full speed
(without raising an exception). At the next iteration, pages marked as dirty are (1) write
protected again before being (2) copied to the destination node. This ordering of steps
is essential to avoid races between writes and page transfers.

The dirty bit scheme is implemented by duplicating the dirty bit of the page-table
entry (PTE). The dirty bit is set in response to handling by the memory management
unit (MMU) whenever the first write to the page is encountered. At each iteration,
the duplicate bit is checked and, if set, is first cleared before the page is transferred
to the destination node. To provide this shadow functionality, kernel-level functions
accessing the PTE dirty bit are extended to also set the duplicate bit upon the first write
access.

The page protection scheme has certain draw-backs. Some address ranges, such as
the stack, can only be write protected if an alternate signal stack is employed, which
adds calling overhead and increases cache pressure. Furthermore, the overhead of user-
level exception handlers is much higher than kernel-level dirty-bit shadowing. Thus,
we selected the dirty bit scheme in our design. Implementation-specific issues of this
scheme are discussed in detail in the next section.

2.4. Back Migration

To determine if we can benefit from back migration before actually migrating back
an MPI task when the original node is recovered, the performance of MPI tasks across
all nodes must be monitored. Systems, such as Ganglia [30], htop [31] and PAPI [32],
monitor the performance of entire nodes rather than MPI task-specific performance
or even timestep-specific metrics. Per-node measurements tend to be inaccurate as
they fail to capture the “velocity” of an MPI job before and after task migration. In
our design, we eliminate node-centric draw-backs through self-monitoring within each
MPI task.

HPC applications spend 90 percent of the execution time of programs in loops, and
“loop profiling tools” can be used to gather timestep information [33]. During a job’s
execution, MPI tasks record the duration of a timestep and relay this information to
the same decentralized scheduler that we designed for migration trigger as shown in
Figure 1. The scheduler compares the “velocity” of the MPI job before and after task
migration to decide whether or not to migrate an MPI task back to the original node
once this node is brought back online in a healthy state. The decision considers (a) the
overhead of back migration and (b) the estimated time for the remaining portion of the
job, which is also recorded for the MPI job and communicated between the job and the
scheduler. We assume back migration overhead to be symmetric to the initial migration
overhead.

3. Implementation

We next provide implementation details of our process-level live migration under
LAM/MPI+BLCR. The overall design and the principle implementation methodology
are applicable to arbitrary MPI implementations, e.g., Open MPI and MPICH.
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3.1. Failure Prediction and Decentralized Scheduler

As outlined in Section 2, the capabilities of the BMC hardware and IPMI software
abstraction were utilized by our framework to predict failures. In the following, we
focus on the system aspects of the live migration mechanism to tolerate imminent faults
and only to a lesser extent on fault prediction, a topic mostly beyond the scope of this
paper.

The scheduler is implemented as a process of lamd communicating through the
out-of-band channel provided by LAM/MPI. When the scheduler daemon is notified
by the BMC/IPMI health monitoring component, it consults the database to retrieve
information about the MPI jobs and the nodes in the LAM universe. A spare node or,
alternatively, the most lightly loaded node is chosen as the migration target. In our
implementation, we also check the BMC/IPMI sensor readings with preset thresholds
to determine if the degree of urgency allows accommodation of a precopy step. For
example, if the temperature is higher than a high watermark (indicating that failure is
almost instantly imminent), the frozen migration (stop&copy-only) is launched, which
guarantees a shorter migration duration. However, if the value is closer to the low
watermark (indicating that failure is likely approaching but some time remains), the
live migration (with its precopy step) is launched, which reduces overall application
downtime. The design allows additional schemes, selected through a combination of
sensor and history information, to be integrated as plug-ins in the future.

Next, we present implementation details of the process-level mechanisms, includ-
ing dirty page tracking and process image restoration, as they were realized within
BLCR. This is followed by the MPI-level implementation details based on the fun-
damental capabilities of BLCR, including the maintenance of consistency of a global
state for the entire MPI job, as realized within LAM/MPI.

3.2. Process-Level Support for Live Migration

As part of our implementation, we integrated several new BLCR features to ex-
tend its process-level task migration facilities and to coordinate LAM/MPI’s callback
mechanism amongst all MPI processes. The scheduler discussed previously issues the
cr save and cr restore commands on the source and destination nodes, respectively,
when it deems live migration with precopy to be beneficial. Subsequently, once the
precopy step has completed, LAM/MPI issues the cr stop and cr quiesce commands
on the source node and all other operational nodes, respectively.

3.2.1. Precopy at the Source Node: cr save
The cr save command implements a sequence of steps specific to our live migra-

tion. It first sends a signal to the process on the source node where it triggers the
creation of a new thread. This thread performs the precopy work at the user level. We
chose a solution at the user level since a kernel-level precopy can block application
threads, thereby hampering overall computational progress. During the first iteration
of the precopy loop, all non-empty pages are transferred to the destination node. Sub-
sequent iterations, in contrast, result in transfers of only those pages modified since the
last iteration. The top half of Figure 2 at the source node depicts this procedure. Recall
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that the dirty bit approach implemented in our system tracks if a page has been written
to since the last transfer (iteration).

The Linux kernel maintains a dirty bit in the PTE. It is automatically set by the
hardware (MMU) when the page is modified. Yet, we cannot utilize this dirty bit for
our purposes since its state is tightly coupled with the Linux memory management,
specifically the swap subsystem. We have to clear such a flag for each iteration of
our page sweep, yet clearing the PTE dirty bit would indicate that a page need not be
written on a subsequent swap-out, which is violating consistency. Instead of modifying
the dirty bit semantics, we decided to shadow the dirty bit within the reserved bits of
PTE. Updates to this shadow dirty bit may occur through system functions without
much overhead (compared to user-level page protection).

This shadow dirty bit still needs to be preserved across swapping, which is a chal-
lenge since swapped PTEs are partially invalidated. One solution would be to simply
disable swapping, which might be an option for HPC, but a more general solution is
preferable. Linux actually preserves selected fields of a swapped out PTE, among other
things to associate with it the swap disk device and the offset into the device where the
page resides. This swap information includes a set of bits that are preserved, one of
which we utilized as the shadow dirty bit. We implemented this approach in x86 64 and
i386 Linux kernels similar to an orthogonal IA64 design by HP [34]. An alternative to
the dirty bit approach is to use page protection, which is already supported in POSIX-
compliant kernels. This alternative has been investigated [35] but recent comparisons
indicate considerably higher costs than the dirty bit approach [36]. Our on-going work
includes integration of our techniques in Open MPI and BLCR for various Linux dis-
tributions with options for kernel patching or, alternatively, kernel module extensions
for dirty bit support.

During live migration, a precopy thread iteratively transfers dirty pages to the des-
tination node until one of the following conditions is satisfied:

• The aggregate size of dirty memory during the last iteration is less than a lower
memory threshold (default: 1MB);

• the aggregate difference of transferred memory in consecutive iterations is less
than a small difference threshold (indicating that a steady state of the rate in
which pages are written to is reached);

• the remaining time left before the expected failure is below a lower overhead
threshold.

As shown in Figures 5a and 5b, the page dirty modification eventually stabilizes or its
fluctuation is regular (repeats periodically). We could support an empirical factor in the
algorithm to keep a profile history of the page modification rate and its regularity. Such
model parameters could steer future application runs during live migration / precopy
in choosing a more sensitive termination condition. This could be especially beneficial
for jobs with long runtime (a large number of timesteps) or repeated job invocations.

Once the precopy step terminates, the thread informs the scheduler, who then enters
the stop&copy step in a coordinated manner across all processes of the MPI job. This
includes issuing the cr stop command on the source node.
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3.2.2. Freeze at the Source Node: cr stop
The redesigned cr stop command signals the process on the source node to freeze

execution, i.e., to stop and copy the pages dirtied in the last iteration of the precopy step
to the destination node. Threads of the process subsequently take turns copying their
own state information (registers, signal information, etc.) to the destination node. This
functionality is performed inside the Linux kernel (as an extension to BLCR) since
process-internal information needs to be accessed directly and in a coordinated fashion
between threads. The lower half of Figure 2 depicts these actions at the source node.

Between the precopy and freeze steps, the processes of an MPI job also need to
be globally coordinated. The objective is to reach a consistent global state by draining
all in-flight messages and delaying any new messages. This is accomplished in two
parts at the source node, implemented by the cr save and cr stop commands. At the
destination node, a single command implements the equivalent restore functionality.

3.2.3. Precopy and Freeze at the Destination Node: cr restore
At the destination node, the cr restore command with our extensions is issued by

the scheduler. This results in the immediate creation of an equal number of threads as
were existent on the source node, which then wait inside the Linux kernel for messages
from the source node. A parameter to the command, issued by the scheduler, indicates
whether or not a live/precopy step was selected on the source node. In either case,
one thread receives pages from the source node and places them at the corresponding
location in local memory. All threads subsequently restore their own state information
received from the corresponding source node threads, as depicted in Figures 2 and 3 at
the destination node. After the process image is fully transferred and restored, the user
mode is entered. Next, the MPI-level callback function is triggered, which creates the
connections with the other MPI processes of the compute job and restores the drained
in-flight messages discussed next.

3.2.4. Process Quiesce at Operational Nodes: cr quiesce
In steps 4 and 6 of our design (cf. Section 2), processes on all other operational

nodes drain the in-flight messages before the stop&copy step. They then remain sus-
pended in this step, creating a connection with the new process on the destination
(spare) node and ultimately restoring in-flight messages after. This sequence of actions
is triggered through the newly developed cr quiesce command. In our implementation,
issuing this command signals the process (MPI task), which subsequently enters the
MPI-level callback function to drain the messages, waits for the end of the stop&copy
step of the faulty/spare nodes, and then restores its communication state before resum-
ing normal execution.

3.3. Job Communication and Coordination Mechanism for Live Migration

In our implementation, we extended LAM/MPI with fundamentally new function-
ality provided through our BLCR extension to support live migration of a process (MPI
task) within a job. Our approach can be divided into four stages introduced in their re-
spective temporal order:
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Stage 1: Live/Precopy: The scheduler of the LAM daemon, lamd, determines
whether or not live/precopy should be triggered. If sufficient time exists to accom-
modate this stage, the cr save and cr restore commands are issued on the source and
destination nodes, respectively. During the precopy step, the compute job continues to
execute while dirty pages are sent iteratively by a precopy thread on the source node.
If time does not suffice to engage in this live/precopy stage, the next stage is entered
immediately.

Stage 2: Pre-Stop&Copy: In this stage, the scheduler issues a stop&copy com-
mand for mpirun, the initial LAM/MPI process at job invocation, which subsequently
invokes the cr stop and cr quiesce commands on the source node and any other op-
erational nodes, respectively. Once signaled, any of these processes first enters the
callback function, which had been registered as part of the LAM/MPI initialization at
job start. The callback forces a drain of the in-flight data to eventually meet a consistent
global state for all processes (MPI tasks).

Stage 3: Stop&Copy: Upon return from the callback function, the process on
the source node stops executing and transfers the remaining dirty pages and its pro-
cess state. Meanwhile, the processes on other operational nodes suspend in a waiting
pattern, as discussed previously.

Stage 4: Post-Stop&Copy: Once all the state is transferred and restored at the des-
tination (spare) node, the process is activated at this node and invokes the LAM/MPI
callback function again from the signal handler. Within the callback handler, the mi-
grated process relays its addressing information to mpirun, which broadcasts this in-
formation to all other processes. These other processes update their entry in the local
process list before establishing a connection with the migrated process on the spare.
Finally, all processes restore the drained in-flight data and resume execution from the
stopped state.

3.4. Back Migration

Our approach requires that MPI tasks perform self-monitoring of execution progress
along timesteps. One solution is to provide an interposition scheme that intercepts
selected runtime calls of an application at the PMPI layer similar to mpiP [37], a
lightweight profiling library for MPI applications to collect statistical information about
MPI functions. However, to estimate the benefit of the potential back migration, we
must need information about the number of active MPI tasks, which the MPI standard
does not natively support. Thus, our implementation provides an API with calls that
can be directly added to MPI application code within the timestep loop. These called
routines subsequently communicate with the decentralized scheduler to allow timestep-
centric bookkeeping of an MPI task’s progress. Our back migration approach can be
divided into three stages described in the following.

Stage 1: Pre-Live Migration: Instrumentation is added around the time step loop
of the MPI application to measure the overhead of each time step. This information
is subsequently sent together with the bound on the total number of time steps and the
current time integration number to the scheduler of the LAM daemon, which records
the last information it received.
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Stage 2: Live Migration: When a health problem is predicted to result in a future
node failure so that live migration is triggered, the scheduler measures and records the
migration overhead.

Stage 3: Post-Live Migration: Just as prior to live migration, the application
and scheduler continue to assess the overhead of time steps. The scheduler further
compares the difference in “velocity” of the MPI job before and after the migration
and compares it with the migration overhead to decide whether or not to migrate an
MPI task back to the original node once this node is brought back online in a healthy
state.

4. Experimental Framework

Experiments were conducted on a dedicated Linux cluster comprised of 17 com-
pute nodes, each equipped with two AMD Opteron-265 processors (each dual core)
and 2 GB of memory. The nodes are interconnected by two networks, both 1 Gbps
Ethernet. The OS used is Fedora Core 5 Linux x86 64 with our dirty bit patch as
described in Sections 2 and 3. One of the two networks was reserved for LAM/MPI
application communication while the other supported process migration and other net-
work traffic. In the next section, we present results for experiments that exploited one
network interconnect for MPI communication and another for migration. As discussed
in Section 2.2, the MPI job and the migration activity may compete for network band-
width if only a single network is available. It is common for high-end HPC to install
two separate networks, one reserved for MPI communication and the other for oper-
ations such as I/O, booting, system setup and migration. In our experiments, we also
assessed the system performance with a single network responsible for both MPI com-
munication and migration activities. The results are not significantly different from
those with two networks, which shows that for the applications evaluated in our sys-
tem communication and memory intensity do not coincide. The cost of performing
migration over the same interconnect as communication does not change for a single
interconnect as we drain messages and then freeze communication during migration.
Furthermore, for larger systems with higher bandwidth interconnects (1Gbps Ethernet
vs. 40Gbps QDR IB [38]), the bandwidth gain is offset by increases in RAM sizes
that applications utilize. Though our experiments are performed with Ethernet, our im-
plementation is transparent to the network (including Infiniband), which is managed at
the MPI layer. For example, [39] provides a migration framework for MPI over Infini-
Band. Our experiments cite a cost of 1-6.5 seconds for one GB of data over Ethernet.
An extrapolation to 32GB of RAM utilizing 50% of Infiniband’s quad data rate (QDR)
bandwidth would imply a cost of 1.6-3.25 seconds, which shows that our results are
realistic even for large HPC systems. For the future work, we will create and assess
applications with varying communication rates and memory pressure to measure the
tradeoff between live and frozen migrations and to provide heuristics accordingly, as
discussed in the next section.

We have conducted experiments with several MPI benchmarks. Health deteriora-
tion on a node is simulated by notifying the scheduler daemon, which immediately
initiates the migration process. To assess the performance of our system, we measure
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the wall-clock time for a benchmark with live migration, with stop&copy-only migra-
tion and without migration. The migration overheads are introduced by transferring
the state of the process, including the dirty pages, and the coordination among the MPI
tasks. In addition, the actual live migration duration can be attributed to two parts: (1)
the overhead incurred by the iterative precopy and (2) the actual downtime for which
the process on the source node is stopped. Accordingly, precopy durations and down-
times are measured.

We do not have access to larger clusters that allow us root access to install kernel
modules, which is required for the experiments. Experiments on our 17-node cluster
indicate that running 2 MPI processes per node (one per socket) to simulate a larger job
on a larger cluster skews results in that intra-node MPI communication is performed via
shared memory, which results in much lower latencies and even improves our results
(for migration within a node), yet may not be reflective of larger clusters that have
real spare nodes to migrate to. Using multiple cores per socket skews results even
further. Our algorithmic design features scalable data structures, such as a radix tree
representation of nodes [25].

5. Experimental Results

Experiments were conducted to assess (a) overheads associated with the migration,
(b) frozen and live migration durations, (c) scalability for task and problem scaling
of migration approaches, (d) page access patterns and migration times, and (e) back
migration conditions.

Results were obtained for the NAS parallel benchmarks (NPB) version 3.2.1 [40],
a suite of programs widely used to evaluate the performance of parallel systems. Out
of the NPB suite, the BT, CG, FT, LU and SP benchmarks were exposed to class B and
class C data inputs running on 4, 8 or 9 and 16 nodes. Some NAS benchmarks have
2D, others have 3D layouts for 23 or 32 nodes, respectively. In addition to the 16 nodes,
one spare node is used, which is omitted (implicitly included) in later node counts in
this paper. The NAS benchmarks EP, IS and MG were not suitable for our experiments
since they execute for too short a period to properly gauge the effect of imminent node
failures. (With class B data inputs, completion times for EP, IS and MG are 11.7,
4.8 and 4.1 seconds, respectively, for 16-node configurations.) The characteristics of
the NAS PB in terms of computation [40] and communication [41] are discussed in
literature. CG and BT are computation bound, FT is communication bound while SP
and LU balance communication and computation. CG and LU have low frequencies of
writes to disjoint pages (high spatial locality) while SP, BT and FT perform increasing
number of disjoint page writes, as reflected by the required memory transfer rates for
live migration.

5.1. Migration Overhead

The first set of experiments assesses the overhead incurred due to one migration
(equivalent to one imminent node failure). Figure 4a depicts the job execution time
without any migration, with live migration and with frozen (stop&copy-only) migra-
tion under class C inputs on 16 nodes. The corresponding overheads per scheme are
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depicted in Figure 4b. The results indicate that the wall-clock time for execution with
live migration exceeds that of the base run by 0.08-2.98% depending on the appli-
cation. The overhead of frozen migration is slightly higher at 0.09-6%. In contrast
to most benchmarks with small memory footprints, FT illustrates the trend for larger
memory utilization: Live migration results in much lower overhead than frozen mi-
gration. These savings will only increase for larger memory utilizations. The largest
additional cost, 6.7% for frozen migration, was observed for FT under class B inputs
for 16 nodes (not depicted here) due to its comparatively large memory footprint (113
MB) and relatively short execution time (37 seconds). Amongst BT, CG, FT, LU and
SP under classes B and C running on 4, 8 or 9 and 16 nodes, the longest execution
time is 20 minutes (for SP under class C inputs on 4 nodes, also not depicted here).
Projecting these results to even longer-running applications, the overhead of migration
becomes less significant (if not even insignificant) considering the equivalent check-
pointing overhead under current mean-time-to-failure (MTTF) rates.

5.2. Migration Duration
Besides overhead due to migration, we assessed the actual migration duration in-

cluding live migration (precopy duration) and the downtime of other nodes during mi-
gration schemes. Figure 4c depicts (a) live migration with the precopy and downtime
fractions and (b) frozen migration with only its downtime during the stop&copy step,
both for NPB with class C inputs on 16 nodes. The precopy duration was measured
from the issuing of the cr save command to its completion. The stop&copy downtime
was measured from issuing cr stop on the source node / cr quiesce on the operational
nodes to the resumption of the job execution. Live downtime ranged between 0.29-3.87
seconds (0.14-2.73% of the execution time) while stop&copy downtime was between
1.04-7.84 seconds (0.35-5.49% of the execution time). Live migration pays a penalty
for the shorter downtime in that its precopy duration is prolonged. Precopy adds an-
other 2.35-24.4 seconds (1.02-17.18% of the execution time). Nonetheless, the precopy
stage does not significantly affect execution progress of the application as it proceeds
asynchronously in the background. Figure 4d illustrates this fact for each scheme by
comparing the downtime (from Figure 4b) with migration overhead for both frozen
(stop&copy) and live migration. Both schemes show a close match between their re-
spective downtime and overhead numbers. (Some benchmarks show shorter overhead
than the absolute downtime due to larger variances in job execution times subsuming
the shorter overheads, see Section 5.3.)

Figure 4e depicts the amount of memory transferred during migration. With frozen
(stop&copy-only) migration, memory pages of a process cannot be modified while the
process remains inactive in this stage. In contrast, live migration allows pages to be
modified and consequently requires repeated transfers of dirty pages. Hence, both pre-
copy duration and downtime are a function of the write frequency to disjoint memory
pages. Frozen (stop&copy-only) migration results in larger memory transfers (50.7-
448.6MB) than just the stop&copy step of live migration (1.7-251MB), yet the latter
incurs additional transfers (127.4-1565MB) during the precopy step. This result is
consistent with the downtime observations of the two schemes discussed above. Our
experiments also indicate an approximate cost of 0.3 seconds for MPI-level coordi-
nation and communication during live migration plus a cost of less than 0.1 seconds
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transferring process state information, e.g., registers and signal information. Hence,
both the precopy duration and the downtime are almost entirely due to the overhead of
transferring memory pages. Hence, the overall trends and patterns of Figures 4c and
4e tend to be similar.

Experiments with two simultaneous migrations indicated that the overall cost is
slightly lower than the cumulative costs of two migrations in sequence. This is due
to the availability of full bisectional bandwidth of our interconnect for the same data
transfer overhead but slightly lower synchronization overhead since simultaneous mi-
grations share a message drainage barrier.

5.3. Effect of Problem Scaling

Figure 4f depicts the effect of migration on scaling the problem size with class B
and C inputs on 16 nodes. For BT, FT and SP, we observe an increase in overhead as
the task size increases from class B to class C. This behavior is expected as problem
scaling results in larger data per node. However, the inverse behavior is observed for
CG and LU. Though the actual downtime becomes longer as the task size increases
from class B to class C, the absolute downtime (0.27-1.19 seconds) is so small that its
effect is subsumed by the variance of overall job execution time (up to 11 seconds for
CG and up to 8 seconds for LU), ultimately resulting in an overall decrease in overhead
for increasing task sizes.

5.4. Effect of Task Scaling

We next examined migration under strong scaling by increasing the number of
nodes. Figure 4g depicts the overhead for NPB codes with class C inputs on varying
number of nodes (4, 8 or 9 and 16). In most cases, overheads tend to decrease as
the number of nodes increases. Yet, BT(Stop&Copy), CG(Live), LU(Stop&Copy) and
SP(Live) show no obvious trends. As with problem scaling, this can be attributed to
the relatively minor migration downtime, which is effectively subsumed by variances
in job execution times. Hence, no measurable effect on task scaling is observed in these
cases.

Figure 4h depicts the speedup on 4, 8 or 9 and 16 nodes normalized to the wall-
clock time on 4 nodes. The figure also shows the relative speedup of live migration,
of frozen migration (stop&copy-only) and without migration. The lightly colored por-
tion of the bars represents the execution time of the benchmarks in the presence of
one migration. The aggregate value of light and dark stacked bars presents the exe-
cution time without migration. Hence, the dark portions of the bars show the loss in
speedup due to migration. The largest loss in speedup is 0.21 with FT on 16 nodes.
This can be attributed to FT’s relatively large migration overhead (8.5 seconds) com-
pared to its rather short execution time (150 seconds). While the overhead increases
proportionately to the memory footprint, the memory footprint is limited by system
hardware (total memory size), which also limits the migration overhead. Hence, our
results indicate an increasing potential for strong scaling of the benchmarks.
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Figure 5: Evaluation with NPB for Access Patterns (C-16: Class C on 16 Nodes)

5.5. Page Access Pattern & Iterative Live Migration
Next, page access patterns of the NPB application are analyzed with respect to their

effect on live migration, specifically on precopy duration and downtime. Figures 5a and
5b depict the page access pattern of CG and FT with class C inputs on 16 nodes. We
sampled the number of memory pages modified per 0.1 second interval. The page size
is 4KB on our experimental system. The write frequency to memory pages of CG is
lower (∼393/interval) than that of FT (between 1000/interval and 5000/interval). Both
codes show a certain regularity in their write patterns, albeit quite an individual one
each.

To compare the iterative live migration with the page access pattern, we further
evaluated the aggregate amount of the transferred memory and the duration of each
iteration of a full memory sweep, as depicted in Figures 5c and 5d. During the first
iteration, all non-empty pages are transferred (depicted as dark gray in the figures). In
subsequent iterations, only those pages modified since the last iteration (light gray) are
transferred. We observed that the write patterns of Figures 5a and 5b are in accord
with those depicted in Figures 5c and 5d. For CG, memory pages written in the last
two iterations account for 1.6MB corresponding to a write frequency of 393 pages.
However, the dirtied memory in the second iteration is only 1.6MB while that in the
first iteration is 62.2MB overall, even though the iteration durations are the same. This
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happens because the first iteration occasionally coincides with the initialization phase
of the application. There, higher per-page memory access frequencies (2000-8000 per
0.1 second) persist combined with more frequent cold misses in cache. (This effect was
experimentally confirmed but is not explicitly reflected in Figure 5c). For FT, 138MB
and 384MB overall of dirtied memory was transferred in an alternating pattern during
consecutive iterations (Figure 5d) corresponding to the most significant clusters at 1200
and 4600 page updates in Figure 5b.

These profile patterns of the page modification rate could be archived and subse-
quently utilized as an empirical factor for future application runs/precopy decisions to
choose a more sensitive termination condition (see Section 2). Besides the page access
pattern, the communication pattern also affects the precopy decision. For example, if
the application is both communication intensive and memory intensive, the opportu-
nity for the precopy operation to complete before an imminent failure is low for high
migration overhead and significant network contention. Three main criteria for trading
off live and frozen migration and for precopy termination conditions are:

• thresholds, e.g., temperature watermarks in Section 3.1, memory/difference/overhead
thresholds in Section 3.2.1;

• available network bandwidth determined by dynamic monitoring; and

• size of the write set. (If the memory dirtying rate is faster than the available
network rate, the precopy operation may be ineffective.)

Based on these conditions, a heuristics algorithm can be designed. However, the appli-
cations we evaluated are not sufficient to design such an algorithm. In future work, we
plan to create and assess applications with varying communication rate and memory
access pattern that are more suitable.

5.6. Process-Level Live Migration vs. Xen Virtualization Live Migration

We next provide the performance comparison of our approach to another solution at
the OS virtualization layer in the context of proactive FT of MPI applications [42]. The
common benchmarks measured with both solutions on the same hardware were NPB
BT, CG, LU and SP. For these NPB codes with class C inputs on 16 nodes, the overhead
of migrating an entire guest OS ranged between 4-14 seconds under Xen virtualization
while the process-level solution caused only around 1 second overhead. The time taken
from initiating migration to actual completion on 16 nodes ranged between 14-24 sec-
onds for live migration as opposed to a near-constant cost of 13-14 seconds for frozen
migration (stop&copy), both under Xen virtualization. In contrast, our process-level
solution only requires 2.6-6.5 seconds for live migration and 1-1.9 seconds for frozen
(stop&copy-only) migration. The main difference between the two solutions is that the
Xen virtualization solution induced a 13 second minimum overhead to transfer the en-
tire memory image of the inactive guest VM (with a guest memory cap of 1GB) while
the process-level solution constrained migration to only the memory of the respective
process. Hence, our solution (with 1-6.5 seconds of prior warning to successfully trig-
ger live process migration) significantly outperforms the Xen virtualization solution
(with 13-24 seconds of prior warning). One could argue that only a subset of the OS
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image needs to be migrated, yet the strength of virtualization lies in its transparency,
yet it comes at the cost of indiscriminate transfer of the entire virtual memory range.

5.7. Proactive FT Complements Reactive FT

We claim that proactive FT complements its reactive sister. This was already em-
pirically shown in Figure 4h where we noted that scalability of live migration depends
on the amount of transferred memory. Once local memory is exhausted by an applica-
tion, the overhead of a single migration will remain constant irrespective of the number
of nodes. Of course, the rate of failures in larger systems is bound to increase, but
proactive FT supports larger systems while reactive schemes result in increased I/O
bandwidth requirements, which can become a bottleneck. This supports our argument
that proactive schemes are important since they can complement reactive schemes in
lowering checkpoint frequency requirements of the latter.

An analytical argument for the complementary nature is given next. The objective
here is to assess the ability of proactive FT to successfully counter imminent faults,
which subsequently allows reactive schemes to engage in less frequent checkpointing.
Let the time interval between checkpoints be Tc, the time to save checkpoint infor-
mation be Ts, and the mean time between failures (MTBF) be Tf . Then, the optimal
checkpoint rate is Tc =

√
2× Ts × Tf [43]. We also observed that the mean check-

point time (Ts) for BT, CG, FT, LU and SP with class C inputs on 4, 8 or 9 and 16 nodes
is 23 seconds on the same experimental cluster [23]. With a MTBF of 1.25 hours [2],
the optimal checkpoint rate Tc is Tc =

√
2× 23× (1.25× 60× 60) = 455 seconds.

Let us further assume that 70% of failures can be predicted [13] and can thus be avoided
by our proactive migration. (Sahoo et al. actually reported that up to 70% of failures
can be predicted without prior warning; with a prior warning window, the number of
proactively tolerated failures could even exceed 70%.) Our solution can then prolong
reactive checkpoint intervals to Tc =

√
2× 23× (1.25/(1− 0.7)× 60× 60) = 831

seconds. The challenge with proactive FT then becomes (1) to provide a sufficient
number of spare nodes to avoid initial failures by live or frozen migration and (2) to
repair faulty nodes in the background such that jobs running over the course of days
can reclaim failed nodes for future proactive FT.

5.8. Back Migration

We assessed the back migration approach on the same cluster. Results were ob-
tained for NPB as depicted in Figure 6. Figure 6a shows the downtime fraction of live
migration from the original node to a spare for different CPU frequencies at the desti-
nation node. For BT, FT, LU and SP, we observe an increase in downtime as the CPU
frequency on the spare node decreases, which is expected as slower CPU frequencies
result in longer migration. For CG, no obvious increasing behavior is observed since
the main computation of CG is matrix multiplication, which is dominated by memory
accesses and communication rather than CPU frequency-centric effects. The corre-
sponding overheads of one time step per CPU frequency are depicted in Figure 6d.
Figures 6b and 6e depict the savings of back migration for BT and LU. Figures 6c and
6f depict the cross-over region of the previous figures indicating the minimal number
of required time steps to benefit from back migration BT and LU are representative
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Figure 6: NPB Results for Back Migration (C-16: Class C on 16 Nodes)

for the remaining NPB codes. The results for CG, FT and SP are also measured and
assessed but not depicted here since they follow the same trends.

Benefits from the back migration are obtained when
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R× (Td − To)− Tm > 0
which implies

R > Tm/(Td − To)
where R is the number of remaining time steps of the benchmark, Td is the overhead
of one time step on the spare/destination node, To is the overhead of one time step of
the benchmark on the original node, and Tm is the back-migration overhead (assumed
to be symmetric to the initial migration overhead to the spare node). Tm plays an
important role in the calculation of benefits when the number of remaining time steps
(R) is low, which leads to a cross-over point as depicted in Figures 6c and 6f. Benefits
due to migration increase as the CPU frequency on the spare node decreases when R
is large enough to cover up the effect of Tm.

Table 2 summarizes the time steps required to obtain benefits for BT, CG, FT, LU
and SP class C on 16 nodes. The number below the benchmark name is the total

CPU Frequency BT CG FT LU SP
of Spare Node (200) (75) (20) (250) (400)

1.6GHz 14 7 13 13 26
(7%) (9.3%) (65%) (5.2%) (6.5%)

1.4GHz 13 8 4 7 9
(6.5%) (10.67%) (20%) (2.8%) (2.25%)

1.2GHz 6 5 5 7 9
(3%) (6.67%) (25%) (2.8%) (2.25%)

1.0GHz 3 1 4 9 10
(1.5%) (1.33%) (20%) (3.6%) (2.5%)

Table 2: Minimal Time Steps (Percentage) Remained to Benefit from Back Migra-
tion

number of time steps of the benchmark. The results in the table indicate that benefits
from back migration occur when as little as 1.33% and as much as 65% of the MPI job
execute time remains to be executed, depending on the benchmark, for an average of
10.19% of outstanding execution time. These results are highly skewed by the short
runtime duration of the NPB codes, particularly by FT, which has a comparatively short
job execution time and high migration overhead. For larger applications, benefits are
projected to occur for even smaller fractions of execution time.

In general, the larger the amount of outstanding execution and the larger the per-
formance difference between nodes, the higher the benefit due to back migration will
be. These results illustrate a considerable potential of back migration particularly for
large-scale clusters with heterogeneous nodes or multi-hop, non-uniform message rout-
ing. This is an aspect without studied investigation, to the best of our knowledge.

6. Related Work

Process-level migration has been studied extensively in the past [44, 45, 46, 47, 48,
49, 19]. In the context of HPC, many MPI implementations have been retrofitted with
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or design for FT, ranging from automatic methods (checkpoint-based or log-based)
[50, 22, 51] to non-automated approaches [52, 53].

System checkpoint-based methods commonly employ a combination of OS support
to checkpoint a process image (e.g., via the BLCR Linux module [19]) combined with a
coordinated checkpoint negotiation using collective communication among MPI tasks.
User-level checkpointing, in contrast, relies on runtime library support and may require
source preprocessing of an application and typically inflicts lower overhead, yet fails to
capture critical system resources, such as file descriptors [54, 55, 56]. Log-based meth-
ods exploit messages logging and optionally their temporal ordering, where the latter
is required for asynchronous non-coordinated checkpointing. MPICH-V [51] imple-
ments three such protocols. It uses Condor’s user-level checkpoint library [57]. Non-
automatic approaches generally involve explicit invocation of checkpoint routines. In
contrast to these methods, ghost process [58] provides a global management service
with process virtualization mechanisms supporting process migration within clusters
within the Karrighed single-image system. While message logging provides an al-
ternative to coordinated checkpointing, past work on MPI message logging, such as
MPICH-V sender/receiver logging, was conducted under the assumption that global
synchronization would be too costly at scale. This assumption has proved to be incor-
rect even for the largest systems today due to scalable custom interconnects that are
required for collectives within HPC applications [24, 59].

Recent studies focus on proactive FT. The feasibility of proactive FT has been
demonstrated at the job scheduling level [17] and in Adaptive MPI [14, 15, 16] using a
combination of (a) object virtualization techniques to migrate tasks, (b) causal message
logging [60] and (c) load balancing techniques [61] within the MPI runtime system of
Charm++ applications. In contrast to Charm++, our solution is coarser grained as FT
is provided at the process level, thereby encapsulating most of the process context, in-
cluding open file descriptors, which are beyond the MPI runtime layer. The Charm++
approach only migrates threads within the runtime system and lacks live migration sup-
port. Also, back migration provides instant rebalancing instead of adaptive rebalancing
over some period of time.

Two facets on proactive FT are intensively studied. First, there are a number of
research efforts on failure prediction and management [13, 62, 63, 64]. These pa-
pers report high failure prediction accuracy with a prior warning window, which is the
premise for our process migration mechanism proposed in this paper. Second, vari-
ous migration mechanisms are proposed as discussed previously. Furthermore, MPI-
Mitten [65], an MPI library between the MPI layer and the application layer, provides
proactive fault tolerance to MPI applications. It uses HPCM [66] as a middleware to
support user-level heterogeneous process migration. These two facets are integrated in
approaches that combine prediction and migration in proactive FT systems and eval-
uate different FT policies. In [67], the authors provide a generic framework based on
a modular architecture allowing the implementation of new proactive fault tolerance
policies/mechanisms. An agent oriented framework [68] was developed for grid com-
puting environments with separate agents to monitor individual classes or subclasses
of faults and proactively act to avoid or tolerate a fault. Sun et al. provide fault-aware
systems, such as FARS [69, 70] and FENCE [71], to increase the accuracy of fault
prediction and improve system resilience to failures with different fault management

24



mechanisms including process migration. They also model the migration cost, intro-
duce a dynamic scheduling mechanism accordingly and advocate a combined check-
point/migration system but no live migration [72, 73]. In their paper, Tikotekar et al.
also present a simulation framework that evaluates different FT mechanisms and poli-
cies, including a combination of reactive FT and proactive FT to decrease the number
of checkpoints [6], which obtained the best results among all the real and simulated FT
mechanisms and policies. These prior works with their fault models, FT mechanisms
for fault occurrences and their evaluation simulations, confirm that the process migra-
tion is a suitable approach for proactive FT with lower cost than OS virtualization,
which reinforces the significance of our solution.

Investigating approaches for transparent real-time performance monitoring of the
MPI parallel programs, information on wall-clock time of MPI events collected in prior
work [74, 75] with the intent to automatically detect deviations of a process from its
expected behavior and subsequently enable real-time scheduling of MPI programs. We,
in contrast, contribute a monitoring API that meshes directly with MPI applications to
log overheads of time steps, as discussed in Section 3.

Our work enhances LAM/MPI and BLCR [18, 19, 22], which previously was re-
stricted to reactive FT, to a proactive live migration scheme. LAM/MPI+BLCR origi-
nally required a complete system restart for roll-back to the last checkpoint upon fail-
ure, but a number of approaches have been designed to allow (a) selected checkpoint
images to be restarted on new nodes [76], (b) node and head-node failure [77], and
(c) a job-pause mechanism that supports migration without restart [23]. Our solution
orchestrates the BMC/IPMI health monitoring, the new fundamental utilities provided
at BLCR and the extended communication mechanism at LAM/MPI through the de-
centralized scheduler. The framework is simple and applicable to arbitrary MPI imple-
mentations in HPC environment. Furthermore, our approach provides a live migration
mechanism, which supports continued execution of MPI applications during much of
the migration time. This solution parallels live migration at the OS virtualization layer
[78], which has been studied in the context of proactive FT of MPI applications [42],
an approach that supports integrated health-based monitoring and proactive live mi-
gration over Xen guests. We contribute process-level live migration and demonstrate
its superior efficiency to of OS-level virtualization. In HPC, process-level solutions
are more widely accepted than OS virtualization, not the least because of potential
performance penalties of network virtualization or additional driver development for
virtualization-bypass technologies [79, 80].

7. Conclusion

We have contributed a novel process-level live migration mechanism with a con-
crete implementation as an enhancement to the Linux BLCR module and an integration
within LAM/MPI. By monitoring the health of each node, a process can be migrated
away from nodes subject to imminent failure. We also contributed a mechanism to
migrate an MPI task back to the original node once this node is brought back on-
line in a healthy state to eliminate the potential load imbalance or bottlenecks caused
by the initially task migrated, which is an unprecedented concept, to the best of our
knowledge. We show live migrations to be beneficial to frozen migration due to a
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lower overall overhead on application wall-clock execution time. This lower overhead
is attributed to the asynchronous transfer of a large portion of a migrated process im-
age while the application stays alive by proceeding with its execution. Process-level
migration is also shown to be significantly less expensive than migrating entire OS
images under Xen virtualization. The resulting proactive approach complements re-
active checkpoint/restart schemes by avoiding roll-backs if failures are predicted only
seconds before nodes cease to operate. Thus, the optimal number of checkpoints of
applications can be nearly cut in half when 70% of failures are addressed proactively.
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