
High Availability for the Lustre File System

A Dissertation
Submitted In Partial Ful�lment Of

The Requirements For The Degree Of

MASTER OF SCIENCE

In

NETWORK CENTERED COMPUTING,
HIGH PERFORMANCE COMPUTING AND COMMUNICATION

in the

FACULTY OF SCIENCE

THE UNIVERSITY OF READING

by

Matthias Weber

14 March 2007

Supervisors:

Prof. Vassil Alexandrov, University of Reading

Christian Engelmann, Oak Ridge National Laboratory

Acknowledgment

I would like to thank all of you who have given your time, assistance, and patience to
make this dissertation possible.

For making my research at the Oak Ridge National Laboratory possible in the �rst place,
I want to thank my advisor, Christian Engelmann, and Stephen L. Scott. I appreciate
their invitation to write my Master thesis at such a renowned institution and the �nancial
support.

I especially like to thank Christian for his great support and being as excited about the
ongoing research as I am.

Also thanks to Hong Hoe Ong for his support in some struggle with Lustre and to Li
Ou for his help with the prototype design.

Thank you Cindy Sonewald for struggling with administration and bureaucracy to keep
me alive during my stay in the US.

This research is sponsored by the Mathematical, Information, and Computational Sci-
ences Division; O�ce of Advanced Scienti�c Computing Research; U.S. Department
of Energy. The work was performed at the Oak Ridge National Laboratory, which is
managed by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725.

Abstract

With the growing importance of high performance computing and, more importantly,

the fast growing size of sophisticated high performance computing systems, research in

the area of high availability is essential to meet the needs to sustain the current growth.

This Master thesis project aims to improve the availability of Lustre. Major concern of

this project is the metadata server of the �le system.

The metadata server of Lustre su�ers from the last single point of failure in the �le sys-

tem. To overcome this single point of failure an active/active high availability approach

is introduced.

The new �le system design with multiple MDS nodes running in virtual synchrony leads

to a signi�cant increase of availability.

Two prototype implementations aim to show how the proposed system design and its

new realized form of symmetric active/active high availability can be accomplished in

practice.

The results of this work point out the di�culties in adapting the �le system to the

active/active high availability design. Tests identify not achieved functionality and show

performance problems of the proposed solution.

The �ndings of this dissertation may be used for further work on high availability for

distributed �le systems.

Contents

Acknowledgment iii

Abstract v

Contents vii

1. Introduction 1

1.1. Background . 1

1.1.1. High Performance Computing . 1

1.1.2. The Lustre File System . 2

1.2. Previous Work . 4

1.2.1. High Availability Computing . 4

1.2.2. Virtual Synchrony . 8

1.3. Key Problems and Speci�cation . 12

1.4. Software System Requirements and Milestones 12

2. Preliminary System Design 15

2.1. Analysis of Lustre . 15

2.1.1. Lustre Design . 16

2.1.2. Lustre Networking . 18

2.2. Replication Method . 23

2.2.1. Feasibility of Internal Replication 23

2.2.2. Feasibility of External Replication 25

2.3. System Design Approach . 26

2.3.1. Standard Lustre Setup . 26

2.3.2. Lustre using External Replication of the MDS 27

2.4. Final System Design . 30

2.4.1. Prototype 1 . 30

2.4.2. Prototype 2 . 33

3. Implementation Strategy 35

3.1. Lustre Con�guration . 35

3.2. Messaging Mechanisms . 37

3.3. Implementation Challenges . 40

vii

Contents

3.4. System Tests . 42

3.4.1. Functionality . 47

3.4.2. Performance . 51

4. Detailed Software Design 63

4.1. Message Routing . 63

4.2. Single Instance Execution Problem . 66

4.3. Dynamic Group Recon�guration . 68

4.4. Connection Failover . 70

5. Conclusions 73

5.1. Results . 73

5.2. Future Work . 75

References 77

A. Appendix 81

A.1. Lustre HA Daemon Source Code . 81

A.1.1. lustreHAdaemon.c . 81

A.1.2. lustreHAdaemon.h . 104

A.1.3. transis.c . 105

A.1.4. transis.h . 111

A.1.5. lustreMessageAdjust.c . 111

A.1.6. lustreMessageAdjust.h . 119

A.1.7. Make�le . 123

A.2. Benchmark Program Source Code . 125

A.2.1. benchmarkProgram.c . 125

A.2.2. benchmarkProgram.h . 131

A.3. Lustre XML Con�g File . 133

A.4. User Manuals . 135

A.4.1. Benchmark Program . 135

A.4.2. Lustre HA Prototypes . 137

List of Figures 141

List of Tables 143

viii

1
Introduction

1.1 Background

1.1.1 High Performance Computing

High-performance computing (HPC) has become more and more important in the last

decade. With help of this tool problems in research worldwide, such as in climate

dynamics or human genomics are solved. Such real-world simulations use multi-processor

parallelism and exploit even the newest HPC systems.

In general these sophisticated HPC systems su�er a lack of high availability. Thus, the

HPC centres set limited runtime for jobs, forcing the application to store results. This

checkpointing process wastes valuable computational time.

A desired way of producing computational results would be to use no checkpoints and

to produce the result without interruption. This way, no computational time would be

wasted and the result would be produced in the fastest possible way. In order to use

this approach, HPC with no unforeseeable outages is required.

To make current and future HPC systems capable of these demands is the aim of ongoing

research in the Oak Ridge National Laboratory (ORNL). The goal is to provide high

availability (HA) for critical system components in order to eliminate single points of fail-

ure. Therefore di�erent methods of high availability have been tested and implemented

in some systems.

1

1. Introduction

1.1.2 The Lustre File System

Lustre is one of many available parallel �le systems. It runs on some of the fastest

machines in the world. The Oak Ridge National Laboratory uses Lustre as well for their

HPC Systems.

Figure 1.1.: Lustre Overview [8]

Today's network-oriented computing environments require high-performance, network-

aware �le systems that can satisfy both the data storage requirements of individual

systems and the data sharing requirements of workgroups and clusters of cooperative

systems. The Lustre File System, an open source, high-performance �le system from

Cluster File Systems, Inc., is a distributed �le system that eliminates the performance,

availability, and scalability problems that are present in many traditional distributed �le

systems. Lustre is a highly modular next generation storage architecture that combines

established, open standards, the Linux operating system, and innovative protocols into

2

1.1. Background

a reliable, network-neutral data storage and retrieval solution. Lustre provides high I/O

throughput in clusters and shared-data environments, and also provides independence

from the location of data on the physical storage, protection from single points of failure,

and fast recovery from cluster recon�guration and server or network outages. [8, page

1]

Figure 1.1 shows the Lustre File System design. Lustre consists of three main compo-

nents:

• Client

• Meta Data Server (MDS)

• Object Storage Target (OST)

Lustre supports tens of thousands of Clients. The client nodes can mount Lustre volumes

and perform normal �le system operations, like create, read or write.

The Meta Data Server (MDS) is used to store the metadata of the �le system. Currently,

Lustre supports two MDS. One is the working MDS, the other is the backup MDS for

failover. The Lustre failover mechanism is illustrated in Figure 1.2. In case of a failure

the backup MDS becomes active and the clients switch over to this MDS. However, these

two MDS share one disk to store the Metadata. Thus, this HA approach still su�ers a

single point of failure.

The Object Storage Target (OST) is used to physically store the �le data as objects. The

data can be striped over several OSTs in a RAID pattern. Currently, Lustre supports

hundreds of OSTs. Lustre automatically avoids malfunctioning OSTs.

The components of Lustre are connected together and communicate via a wide vari-

ety of networks. This is due to Lustre's use of an open Network Abstraction Layer.

Lustre currently supports tcp (Ethernet), openib (Mellanox-Gold In�niband), iib (In-

�nicon In�niband), vib (Voltaire In�niband), ra (RapidArray), elan (Quadrics Elan),

gm (Myrinet).

3

1. Introduction

Figure 1.2.: Lustre Failover Mechanism [8]

1.2 Previous Work

1.2.1 High Availability Computing

HA of a system is its ability to mask errors from the user. This is achieved with re-

dundancy of critical system components and thus elimination of single points of failure.

If a component fails the redundant component takes over. This functionality prevents

system outages and possible loss of data.

The degree of transparency in which this replacement occurs can lead to a wide variation

of con�gurations. Warm and hot standby are active/standby con�gurations commonly

4

1.2. Previous Work

used in high availability computing. Asymmetric and symmetric active/active con�gu-

rations are commonly used in mission critical applications.1

• Warm Standby requires some service state replication and an automatic fail-

over. The service is interrupted and some state is lost. Service state is regularly

replicated to the redundant service. In case of a failure, it replaces the failed

one and continues to operate based on the previous replication. Only those state

changes are lost that occurred between the last replication and the failure.1

• Hot Standby requires full service state replication and an automatic fail-over.

The service is interrupted, but no state is lost. Service state is replicated to the

redundant service on any change, i.e., it is always up-to-date. In case of a failure,

it replaces the failed one and continues to operate based on the current state.1

• Asymmetric Active/Active Asymmetric active/active requires two or more ac-

tive services that o�er the same capabilities at tandem without coordination, while

optional standby services may replace failing active services (n + 1 and n + m).

Asymmetric active/active provides improved throughput performance, but it has

limited use cases due to the missing coordination between active services.1

• Symmetric active/active requires two or more active services that o�er the same

capabilities and maintain a common global service state using virtual synchrony.

There is no interruption of service and no loss of state, since active services run in

virtual synchrony without the need to fail-over.1

These redundancy strategies are entirely based on the fail-stop model, which assumes

that system components, such as individual services, nodes, and communication links,

fail by simply stopping. They do not guarantee correctness if a failing system component

violates this assumption by producing false output.1

Previous and related research in the area of symmetric active/active HA encompasses the

two following described projects. Goal of these projects were prototype implementations

as proof-of-concept.

1Towards High Availability for High-Performance Computing System Services [12]

5

1. Introduction

Symmetric Active/Active Head Nodes

Compute Nodes

LAN

Figure 1.3.: Advanced Beowulf Cluster Architecture with Symmetric Active/Active High
Availability for Head Node System Services [21]

JOSHUA

The emergence of cluster computing in the late 90s made low to mid-end scienti�c com-

puting a�ordable to everyone, while it introduced the Beowulf cluster system architecture

with its single head node controlling a set of dedicated compute nodes. The impact of

a head node failure is severe as it not only causes signi�cant system downtime, but also

interrupts the entire system. One way to improve the availability of HPC systems is to

deploy multiple head nodes.[19]

The JOSHUA project o�ers symmetric active/active HA for HPC job and resource

management services. It represents a virtually synchronous environment using external

replication providing HA without any interruption of service and without any loss of

state.[21]

Figure 1.3 shows the system layout of the prototype solution in the JOSHUA project.

6

1.2. Previous Work

The prototype uses the external way to replicate the system service head nodes. Transis

is used as group communication facility. The prototype design of the JOSHUA project

is in its basic technologies very close to the intended solution of this project. The

performance test results of the JOSHUA prototype, shown in Table 1.1, are an excellent

example of the latency time imposed by the use of external replication. These times can

be used to compare and judge the performance of the prototype of this project.

System # Latency Overhead
TORQUE 1 98ms
JOSHUA/TORQUE 1 134ms 36ms / 37%
JOSHUA/TORQUE 2 265ms 158ms /161%
JOSHUA/TORQUE 3 304ms 206ms /210%
JOSHUA/TORQUE 4 349ms 251ms /256%

Table 1.1.: Job Submission Latency Comparison of Single vs. Multiple Head Node HPC
Job and Resource Management [21]

Metadata Service for Highly Available Cluster Storage Systems

The �Metadata Service for Highly Available Cluster Storage Systems� project targets

the symmetric active/active replication model using multiple redundant service nodes

running in virtual synchrony. In this model, service node failures do not cause a fail-over

to a backup and there is no disruption of service or loss of service state. The prototype

implementation shows that high availability of metadata servers can be achieved with

an acceptable performance trade-o� using the active/active metadata server solution.[2]

Goal of the project was the replication the metadata server of the Parallel Virtual File

number of clients
System 1 2 4 8 16 32

PVFS 1 server 11 23 52 105 229 470
Active/Active 1 server 13 27 54 109 234 475
Active/Active 2 servers 14 29 56 110 237 480
Active/Active 4 servers 17 33 67 131 256 490

Table 1.2.: Write Request Latency (ms) Comparison of Single vs. Multiple Metadata
Servers [18]

7

1. Introduction

Client

Client

Client

MDS 1

Metadata

MDS 2

Metadata

MDS N

Metadata

Data Server
File Data

Data Server
File Data

Data Server
File Data

Data Server
File Data

Group Communication Services

Global State Synchronization

Figure 1.4.: Active/Active Metadata Servers in a Distributed Storage System [18]

System (PVFS). The replication was realised using the internal method. The group

communication functionality was implemented with help of Transis. Since this Master

thesis targets the same goal like the �Metadata Service for Highly Available Cluster

Storage Systems� project, except with Lustre instead of PVFS, the acquired performance

tests results are exceptionally valuable for comparison and judgement. Table 1.2 shows

the write latency time caused by multiple metadata servers. Figures 1.5 and 1.6 show

the read and write throughput of the attained prototype solution of the project.

1.2.2 Virtual Synchrony

In order to design a HA architecture, important system components must be replicated.

As a result the former single component builds a group of redundant components. This

group behaves like a single component to the rest of the system. If one component

in this group fails a redundant component can take over. In case of an active/active

architecture, the components in the group have to be in virtual synchrony. This means

8

1.2. Previous Work

0

20

40

60

80

100

120

1 2 4 8 16 32

Number of Clients

T
h

ro
u

g
h

p
u

t
(R

eq
u

es
ts

/s
ec

)
PVFS A/A 1 A/A 2 A/A 4

Figure 1.5.: Write Request Throughput Comparison of Single vs. Multiple Metadata
Servers, A/A means Active/Active Servers [18]

0

50

100

150

200

250

300

350

400

1 2 4 8 16 32

Number of Clients

T
h

ro
u
g
h
p
u
t
(R

eq
u
es

ts
/s

ec
)

1 server 2 servers 4 servers

Figure 1.6.: Read Request Throughput Comparison of Single vs. Multiple Metadata
Servers [18]

9

1. Introduction

that every component is in the same state as the others. This can be achieved through

a group communication system (GCS). The GCS is like a shell around the group of

redundant components. It intercepts the requests from the system and distributes them

to the group. In this step it also ensures total ordering of the messages. This way it is

ensured that every component gets the same requests in the same order and produces

therefore the same outputs. The GCS is also responsible for �ltering of all the equal

outputs from the redundant components of the group and sending each output only once

to the system.

There are many di�erent GCS available. Some of them are Isis, Horus, and Transis.

The experience from the preceding HA projects2,3 in the ORNL has shown that Transis4

is the most suitable one. It is an open source group communication project from the

Hebrew University of Jerusalem.

Transis can provide all necessary group communication facilities needed for the imple-

mentation of the high available job scheduler service system.

The Transis group communication framework provides:

• group communication daemon

• library with group communication interfaces

• group membership management

• support for message event based programming

Distributed locks or even distributed mutual exclusion solutions are not included and

have to be implemented, if needed.

The fact that Transis is an open source project makes necessary adjustments possible.

In the scope of the Metadata Service Project2 Transis has been improved by Li Ou.

Through the new �Fast Delivery Protocol� implementation it o�ers lower latency and

better throughput than the standard Transis implementation.

2The JOSHUA Project [21]
3Symmetric Active/Active Metadata Service [18]
4The Transis Project [3]

10

1.2. Previous Work

The changes due to the �Fast Delivery Protocol� are described in the paper �A Fast

Delivery Protocol for Total Order Broadcasting�[19].

Total order broadcasting is essential for group communication services, but the agree-

ment on a total order usually bears a cost of performance: a message is not delivered

immediately after being received, until all the communication machines reach agreement

on a single total order of delivery. Generally, the cost is measured as latency of totally

ordered messages, from the point the message is ready to be sent, to the time it is

delivered by the sender machine.[19]

In communication history algorithms, total order messages can be sent by any machine at

any time, without prior enforced order, and total order is ensured by delaying the delivery

of messages, until enough information of communication history has been gathered from

other machines.[19]

Communication history algorithms have a post-transmission delay. To collect enough

information, the algorithm has to wait for a message from each machine in the group,

and then deliver the set of messages that do not causally follow any other, in a pre-

de�ned order, for example, by sender ID. The length of the delay is set by the slowest

machine to respond with a message. The post-transmission delay is most apparent when

the system is relatively idle, and when waiting for response from all other machines in

the group. In the worst case, the delay may be equal to the interval of heart beat mes-

sages from an idle machine. On the contrary, if all machines produce messages and the

communication in the group is heavy, the regular messages continuously form a total

order, and the algorithm provides the potential for low latency of total order message

delivery. In a parallel computing system, multiple concurrent requests are expected to

arrive simultaneously. A communication history algorithm is preferred to order requests

among multiple machines, since such algorithm performs well under heavy communi-

cation loads with concurrent requests. However, for relatively light load scenarios, the

post-transmission delay is high. The fast delivery protocol reduces this post-transmission

delay. It forms the total order by waiting for messages only from a subset of the machines

in the group, and by fast acknowledging a message if necessary, thus it fast delivers total

order messages.[19]

11

1. Introduction

1.3 Key Problems and Speci�cation

This master thesis aims to develop a HA solution for the Meta Data Server (MDS) of

the Lustre File System.

So far, the Lustre File System provides only an active/standby architecture for the MDS.

This solution uses one shared disk for both Meta Data Servers, and therefore su�ers from

a single point of failure.

The aim is to eliminate this last single point of failure in Lustre and to implement an

active/active HA architecture for the MDS. This will replicate the MDS on several nodes

using their own disk to hold the Metadata.

Thus, the result of the project should be a prototype providing the highest possible

degree of availability for the MDS.

1.4 Software System Requirements and Milestones

To overcome the problems of the existing HA solution of Lustre the single point of failure

must be eliminated. Therefore the design of Lustre has to be changed. To achieve the

highest rate of availability for Lustre, a symmetric active/active architecture for the

MDS needs to be implemented.

The work carried out to realize a symmetric active/active architecture for the MDS of

PVFS gives an example solution to the problem.5 In this project an internal replication

of the MDS was implemented with the use of Transis as group communication facility.

To achieve a similar solution for the Lustre File System the MDS must be �isolated�

from the other components of the system. After this step the MDS has to be replicated.

This may be done in two ways. The �internal� and the �external� replication. Both

methods have their own advantages and disadvantages. Which method to choose has to

be investigated in the beginning of the project.

5Symmetric Active/Active Metadata Service [21]

12

1.4. Software System Requirements and Milestones

If replication is done internally, the MDS of Lustre itself needs to be analysed in order

include the group communication system into the code. If replication is done externally,

a complete understanding of the Lustre networking and the MDS protocol is needed.

The most important part of the active/active HA architecture is the global state of the

replicated MDS. Each MDS has to have the same state like the others. The MDS group

has to run in virtual synchrony. To achieve this goal every possible communication to

and also from the MDS has to be analysed. This communication has to be handled

properly with the help of group communication software.

Furthermore, a solution for dynamic group recon�guration has to be developed. The

recovery, joining and leaving of group members must be masked from the user. Therefore

the functionality of the MDS itself needs to be analysed.

Another key problem is the single instance execution problem. Because the MDS group

members run in virtual synchrony every single MDS produces the same output. The

group communication software has to be designed in a way, that makes sure the proper

output is send only once to the requesting component of the system.

In order to mask a failing MDS from connected clients a connection failover mechanism

needs to be implemented. If the connected MDS fails, the mechanism has to reconnect

to another MDS group member. Therefore the client code must be adjusted and a list

of available MDS group members has to be hold and updated at runtime.

The main goal is to design, implement and test a prototype software that meets the

proposed criteria. The prototype should use the existing Transis group communication

software as basis to implement the virtual synchrony functionality.

The following milestones are set up to help to evaluate every step during the development

process toward the �nal implementation.

There are three di�erent milestone categories, which outline the project development

status:

• Milestone Category A - minimal criteria and requirements are met

• Milestone Category B - optimal criteria and requirements are met

13

1. Introduction

• Milestone Category C - all requirements are met, including extra capabilities

The following requirement table will be the criteria foundation to judge the success of

the later implementation and the project process. Especially the system tests will prove,

whether all the requirements are met by the dissertation project.

required capability category milestone

analysis of MDS communication A 1

choice of one replication method A 2

replication of the MDS on the backup node in active/ac-
tive mode

A 3

solution for single instance execution problem A 4

MDS service stays available, as long as one node is up A 5

replication of the MDS on more than two nodes B 6

client connects to other MDS node if own fails B 7

new MDS nodes can dynamically join B 8

client table of MDS nodes is updated at runtime B 9

performance improvements for prototype development C 10

Table 1.3.: Requirements and Milestones Overview

14

2
Preliminary System Design

2.1 Analysis of Lustre

Figure 2.1.: Interactions between Lustre Subsystems [8]

In order to design a su�cient HA solution Lustre needs to be analysed. Goal is to

understand partwise the inner workings of the relevant system components and the

communication in particular.

The Lustre software distribution comes with a couple of papers and manuals describing

the �le system and its components in general. One crucial information needed to design

15

2. Preliminary System Design

the prototype is the exact communication (e.g. protocol, what format, what content,

how much messages for one task ...) between the MDS and the other components. Lustre

itself provides almost as much information on that matter as shown in Figure 2.1. This

is by far to general and of little value for the prototype design. As a result, there is no

way around reading and analysing the Lustre source code.

The analysis of the source code takes a lot of time due to almost no comments in the

code and no description at all. The other problem is the code itself. The Lustre design

is very complex and complicated what makes the code intransparent and hard to read.

One example is that Lustre runs nearly all components as kernel modules. Thus they

publish most of the functions to the kernel namespace. That way they can be called all

the time from everywhere in the kernel. That makes it hard to point out the function

call path like in a normal program. Also the code itself di�ers from a normal user space

application due to the fact that it is kernel code.

2.1.1 Lustre Design

MDS, MDC, LOV, OSC

PTLRPCKSOCKLND

OBDCLASS
LNET

FSFILT_LDISKFS

LDISKFS

LIBCFS

LVFS

Lustre Modules

File System
Comonents RPC Networking Disk Access File System

Library

Module dependencies

Module usage

Figure 2.2.: Lustre Module Dependencies

The design of Lustre is highly modular. Figure 2.2 shows a snapshot of the loaded

modules of a running Lustre. Table 2.1 gives the description of the modules provided in

the source code. Besides the main components like OST or MDS, Lustre uses also a lot

of other modules to do the networking or the disk access.

16

2.1. Analysis of Lustre

Module Description

MDS Metadata Server

MDC Metadata Client

LOV Logical Object Volume OBD Driver

OSC Object Storage Client

PTLRPC Request Processor and Lock Management

KSOCKLND Kernel TCP Socket LND v1.00

LNET Portals v3.1

FSFILT-LDISKFS Lustre ext3 File System Helper

LDISKFS Lustre ext3 File System

OBDCLASS Lustre Class Driver

LVFS Lustre Virtual File System

LIBCFS Lustre File System Library

Table 2.1.: Lustre Module Description

For calls between modules Lustre uses its own kind of remote procedure call (RPC) sent

via Sockets over the network. Because Lustre is written in C and there are no object

oriented facilities available, Lustre uses structures extensively to organise data. Even

the network component itself (LNET) is hold in a structure.

To perform a call from the client (in this case the MDC) to the server (the MDS) Lustre

uses the modules in the way indicated in Figure 2.2. The data, the request itself and

the needed information for the connection is assembled and packed from one structure

into another from module to module. This scheme in shown in Figure 2.3. The response

from the MDS takes the same way backwards.

17

2. Preliminary System Design

Request Call Path

struct
ptlrpc_request

struct
lnet_md_t

struct
lnet_libmd_t

struct
lnet_libmd_t

struct
lnet_msg_t

struct
ksock_tx_t

struct
iovec

struct
msghdr send

request MDC

PTLRPC

LNET

KSOCKLND

Figure 2.3.: Path of Metadata Client Request

2.1.2 Lustre Networking

Lustre is a tightly integrated system. All of its components are de�ned and assigned

to nodes before the system starts. That way the �le system knows all nodes and the

complete setup in advance. As part of the Lustre security concept only messages from

these de�ned nodes are accepted.

Lustre also accepts only direct sent messages and thus doesn't allow routing of messages.

In order to check integrity of received messages Lustre looks into the message header.

It compares the sender of the message given in the header with the address of the node

from which the message was received. If they don't match the message is dropped.

The connections are set up like shown in Figure 2.4. First the OSTs are started. Af-

terwards the MDS is started. The MDS connects to the OSTs. At last the clients are

started. They connect to the MDS as well as to the OSTs.

Each component initiates three single connections to the respective component. For

instance, the Client opens three ports to the MDS. Another restriction of Lustre is that

only three connections per node are accepted. In case a node opens more connections

18

2.1. Analysis of Lustre

Client

Lustre Connection Initialisation

Startup of OST

OST
MDS

Client

Startup of MDS

1
2
3

OST
MDS

Client

Startup of Client

123456

OST
MDS

Figure 2.4.: Lustre Connection Initialisation

19

2. Preliminary System Design

e.g., a client tries to establish a fourth connection, the �rst connection is dropped.

To initiate a connection between two components, the Lustre protocol must be followed.

This process takes four messages explained in the following example of a client estab-

lishing a connection to the MDS.

Figure 2.5.: Lustre Acceptor Request Message

First the client sends an �Acceptor Request� message to the MDS. This message has

the layout as shown in Figure 2.5. The message is 16 bytes long. The �st 4 bytes are

the indicator of the used acceptor protocol. The next 4 bytes describe the protocol

version. Whereas the number is split internally into two 2 byte values describing the

minor and major version number. This is checked for compatibility reasons with later

Lustre versions. The last 8 byte number identi�es the target to which the connection

should be established. This target nid consists of a 4 byte address and 4 byte network

id. The address id is directly created from the IP address of the node. The network

id identi�es the network type e.g., TCP. This information is needed because Lustre is

capable of using di�erent network types at the same time. When this message arrives at

the MDS and if the values are correct the connection from the client is accepted. Now

the LNET layer of Lustre must be initialised. Therefore the MDS waits for the �LNET

Hello� message from the client.

The �LNET Hello� message is indicated in Figure 2.6. It consists of a 32 bytes header

and payload. The size of the payload is given in the header. However, in the �LNET

Hello� message this size is zero and no payload is sent. The �rst 4 byte describe the

20

2.1. Analysis of Lustre

Header Payload
4Size in Bytes: 4 8 44 4 4

Figure 2.6.: Lustre LNET Hello Message

used LNET protocol. The next 4 byte, like in the Acceptor Request message, describe

the protocol minor and major version. The following 8 byte hold information about

the sender of this message. They contain the address and network type of the source

node. The next two 4 byte values are used to identify and distinguish this message from

other messages. The MDS for instance uses the Process Id (pid) numbers to identify a

request and to send the processed response to that request. With the sent pid the client

can identify the response from the MDS and assign it to this request. The 4 byte value

�Header Type� type identi�es type of the header. For metadata this value is always

�SOCKNAL_RX_HEADER�. This is due to the fact that one request is done in one

message. For transport of �le data, the header type could change to other values, like

�SOCKNAL_RX_BODY�, because more than one message may be needed to transfer

the entire datablock. However, this �eld is of no concern in terms of metadata. The last

4 byte value holds the size of the payload. This value should be zero in �LNET Hello�

messages.

The �LNET Hello� messages are exchanged in form of a handshake. Fist the client sends

his �LNET Hello� message to the MDS. Then he waits for the �LNET Hello� from the

MDS. When the MDS receives the �LNET Hello� from the client he checks the values and

sends his �LNET Hello� message back to the client. After the �LNET Hello� messages are

exchanged, one more message is needed to fully establish the connection. This message

is described next.

21

2. Preliminary System Design

Header Payload
Size in Bytes: 8 8 44 4 4

Figure 2.7.: Ordinary Lustre Message

The ordinary Lustre message format is shown in Figure 2.7. A Lustre message consists

of the 32 bytes header and payload. The �st two 8 byte values hold the address and

network type of the message source and destination node. The next three 4 byte values

are the same like in the �LNET Hello� header. The pid values are used to identify the

requests and responses. The header type is always �SOCKNAL_RX_BODY� because

one request is transmitted completely in one message. The last 4 bytes of the header

hold the size of the payload. This size is limited to 4KB in Lustre. The payload is sent

directly behind the header.

To complete the communication initialisation after the �LNET Hello� handshake, one

message is sent from the client to the MDS. This message holds the Universally Unique

Identi�er (UUID) of the client and the MDS in the payload. With this information the

MDS can fully establish the connection to the client and process its requests.

A Universally Unique Identi�er (UUID) is an identi�er standard used in software con-

struction, standardized by the Open Software Foundation (OSF) as part of the Dis-

tributed Computing Environment (DCE). The intent of UUIDs is to enable distributed

systems to uniquely identify information without signi�cant central coordination. Thus,

anyone can create a UUID and use it to identify something with reasonable con�dence

that the identi�er will never be unintentionally used by anyone for anything else. In-

formation labelled with UUIDs can therefore be later combined into a single database

without needing to resolve name con�icts. The most widespread use of this standard

22

2.2. Replication Method

is in Microsoft's Globally Unique Identi�ers (GUIDs) which implement this standard.

Other signi�cant users include Linux's ext2/ext3 �lesystem, LUKS encrypted partitions,

GNOME, KDE, and Mac OS X, all of which use implementations derived from the uuid

library found in the e2fsprogs package.[4]

A UUID is essentially a 16-byte (128-bit) number. In its canonical hexadecimal form a

UUID may look like this:

550e8400-e29b-41d4-a716-446655440000

The number of theoretically possible UUIDs is therefore 2128 = 25616 or about 3.4x1038.

This means that 1 trillion UUIDs have to be created every nanosecond for 10 billion

years to exhaust the number of UUIDs.[4]

2.2 Replication Method

Before the prototype can be designed, a decision about the replication method has to be

made. This decision is vital as it a�ects the entire prototype design. Both replication

methods have their own advantages and disadvantages. But it is not only the question

what method suits best the needs of the prototype. The other important fact to consider

is the feasibility of each method with respect to the Lustre design and the possibilities

in the scope of this thesis.

2.2.1 Feasibility of Internal Replication

In the internal replication, as shown in Figure 2.8, the group communication system

is implemented direct into the Lustre code. Thus no inter-process communication is

needed and as a result this method should yield higher performance than the external.

In general there should be no problem with Lustre itself to realize this method. It

would be possible to link into the MDS communication path1 at some point, probably

somewhere in the RPC module. In this module it is easy to �lter the incoming and

outgoing requests (structures) of the MDS and to distribute them to Transis.

1The path of the MDS is similar to the path of the MDC shown in Figure 2.3

23

2. Preliminary System Design

Node C

Adapter

Service

Adapter

Node B

Adapter

Service

Adapter

Node A

Adapter

Service

Adapter

M
es

sa
ge

s
M

es
sa

ge
s

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

M
es

sa
ge

s
M

es
sa

ge
s

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

M
es

sa
ge

s
M

es
sa

ge
s

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Group
Communication

Group
Communication

Group
Communication

Group
Communication

M
es

sa
ge

s
M

1 M
es

sa
ge

s
M

2 M
es

sa
ge

s
M

3

M
es

sa
ge

s
M

1,
 M

2,
 M

3

User Interface User Interface

User Interface User Interface

Figure 2.8.: Scheme of Internal Replication Method

The core problem in the design of an internal solution is not Lustre, it is Transis. Transis

is a user-space program. Transis consist of a daemon running in userspace and a library

to be linked to the user application. This application calls the library functions and the

library calls the daemon, which does the group communication work. The problem is

that Lustre is made up of kernel modules and runs therefore in kernel space. In order to

include the group communication direct into the Lustre code, the Transis library needs

to be linked into kernel space. This is not possible because the Transis library uses

functions which are only available in user-space. The only workaround to this problem

is to redesign the Transis library for kernel space. This is theoretically possible, but due

to the limited time of this project not reasonable.

The other problem is the development of the prototype itself. Because the group commu-

nication system is implemented directly into the RPC module, the prototype becomes a

new version of Lustre. This means, to test changes made during the development process

Lustre has to be rebuild and reinstalled �rst. This takes a lot of time. Furthermore,

the whole development of the prototype becomes kernel development. This is also not

reasonable.

24

2.2. Replication Method

To summarize, this method could theoretically be implemented, but the goal within the

scope of this project will be to design an external replication.

2.2.2 Feasibility of External Replication

Node C

Interceptor

Service

Interceptor

Node B

Interceptor

Service

Interceptor

Node A

Interceptor

Service

Interceptor

M
es

sa
ge

s
M

es
sa

ge
s

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

M
es

sa
ge

s
M

es
sa

ge
s

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

M
es

sa
ge

s
M

es
sa

ge
s

Send

Process

Receive
M

1,
 M

2,
 M

3
M

1,
 M

2,
 M

3
Group

Communication

Group
Communication

Group
Communication

Group
Communication

M
es

sa
ge

s
M

1 M
es

sa
ge

s
M

2 M
es

sa
ge

s
M

3

M
es

sa
ge

s
M

1,
 M

2,
 M

3

User Interface User Interface

User Interface User Interface

User Interface User Interface

User Interface User Interface

Figure 2.9.: Scheme of External Replication Method

The external replication method is shown in Figure 2.9. In this solution the group

communication system is build like a shell around the MDS. The group communication

system is placed into the Client-MDS communication path as an intermediate commu-

nication process, see Figure 2.12. This process intercepts the calls over the network to

and from the MDS and distributes the TCP packages to Transis. As a result there is no

need to touch the MDS code.

The disadvantage of this method is higher latency time due to inter-process communi-

cation. There is also the need to know the exact communication protocol and format

between the MDS and the client.

The problem of the internal replication is not present in this solution. The interceptor

25

2. Preliminary System Design

process runs as normal user space application and thus there is no problem in linking

the Transis library into it.

To realize this approach, Lustre must be con�gured in a way that di�ers from the stan-

dard setup. The Lustre setup, its network components and the tasks of each component,

are con�gured in one XML �le. Lustre assumes that every node in the �le system uses

the same XML �le for the con�guration and startup. However, there seems to be no big

problem to use di�erent XML �les for di�erent nodes. That way the external replication

may be realized.

This method is feasible within the limits of the project and the objective of the master

thesis now is to use this replication method for the prototype design.

2.3 System Design Approach

Two projects have implemented prototypes of active/active HA solutions so far. The

aims of these the projects and their results are explained in Section 1.2. Using the

experience of these preceding projects a �rst prototype design can be developed. This

design provides the basic HA functionality and has to be adjusted to the special needs

of Lustre later.

2.3.1 Standard Lustre Setup

Figure 2.10 shows an example of the standard setup of Lustre. For the development of

the project this setup is used. It is only a very minimal setup of Lustre nevertheless it

provides the full functionality of the �le system.

The project setup of Lustre uses three computing nodes for the three main components

of Lustre. One node (usr1) is used as client and mounts the �le system. From this node

the functionality of the prototype can be tested and performance tests of the �le system

can be run. On the second node two OSTs are installed. Each OST is an independent

partition on the disk. The third node runs as MDS for the �le system. The MDS stores

its data on a partition of the disk as well.

26

2.3. System Design Approach

MDS
IP: 10.0.0.5

Port 988

OST
IP: 10.0.0.4

Port 988

Client
IP: 10.0.0.1

Port 988

MDS

OSTs

Client

read, write
file data

read status

read, write
metadata

Figure 2.10.: Standard Lustre Setup

This approach is su�cient to develop the HA prototype. The full �le system functionality

can be tested with this setup and the separation of the components to di�erent nodes

allows easy handling and analyses.

2.3.2 Lustre using External Replication of the MDS

According to the Lustre design shown in Figure 1.1, in Section 1.1.2, the MDS is one

component of the entire �le system. This component needs to be replicated. To achieve

a virtual synchrony environment the group communication system Transis has to be put

around the MDS group.

Figure 2.11 shows the scheme of an active/active HA solution. A process (MDS) is

replicated on several nodes. The group communication system (Transis) is placed before

and behind this process. Before the process, Transis receives all requests and distributes

27

2. Preliminary System Design

Node A Node B Node C

Service

M
es

sa
ge

s
M

es
sa

ge
s

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Service

M
es

sa
ge

s
M

es
sa

ge
s

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Service

M
es

sa
ge

s
M

es
sa

ge
s

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Group
Communication

Group
Communication

Group
Communication

Group
Communication

M
es

sa
ge

s
M

1 M
es

sa
ge

s
M

2 M
es

sa
ge

s
M

3

M
es

sa
ge

s
M

1,
 M

2,
 M

3

Figure 2.11.: Scheme of Active/Active HA

them to all nodes. In this step it ensures total message order. This means, all messages

are delivered in the same order to all nodes. Thus, the MDS group runs in virtual syn-

chrony. Then the requests are processed by all nodes independently. This however causes

the single instance execution problem. The MDS group processes as much responses as

members the group has. To overcome this hurdle the group communication system is

placed behind the process as well. Here it receives the responses of the processes again.

It makes sure each response is delivered only once to the system.

The system design of the preliminary prototype is shown in Figure 2.12. The major

di�erence from the normal Lustre con�guration is the group communication system

Transis. The Transis daemon runs on each MDS node. This daemon provides the group

communication functionality. The daemon can be accessed with the Transis library. In

order to distribute the incoming messages to the Transis daemon and to receive messages

from the daemon an interceptor program, implementing the Transis library, has to be

written.

The interceptor implements all needed group communication and routing functionality.

28

2.3. System Design Approach

distribute
requests,

filter responses

MDS
Port 9000

OST
Port 9000

MDS
Port 9000

Client
Port 9000

Transis
Port 8000

Transis
Port 8000

MDS 1MDS 2

OSTs

Client

read, write
file data

read statusread status

read, write
metadata

Figure 2.12.: Preliminary System Design

This program opens a port (e.g. 8000) to accept connections from the Lustre clients.

The MDS itself listens on its own port (e.g. 9000) for incoming messages from the clients,

which are rerouted through the interceptors.

To get the �le system working with interceptors, Lustre must be con�gured in a proper

way. This may be done with the con�g XML �le from Lustre, described in Section 3.1.

Lustre reads its complete setup from one XML �le for all nodes. The rule, to use one

XML �le for all nodes must be ignored. To con�gure Lustre, one XML �le for each node

has to be created. The XML �les used to con�gure the MDS and the OST nodes have

to set up the MDS on port 9000. Whereas the XML �le used to con�gure the Client

node has to set up the MDS on port 8000. Thus, the clients expect the MDS there and

send the requests to this port. On this location (the MDS node on port 8000) however,

the interceptor program is running. It catches the messages and routes them through

29

2. Preliminary System Design

the Transis daemon. The daemon orders all incoming messages and distributes them to

all MDS nodes. The ordered messages are sent back by the daemon to their respective

interceptor program. After this step, each interceptor forwards the messages from the

daemon to the MDS running on his node.

The procedure of the response from the MDS to the client works the same way. All

MDS nodes produce their result (all the same of course) independently. The MDS nodes

send the result to their respective interceptor. The interceptor forwards the messages

to Transis. Transis orders all messages and sends them back to the interceptor. The

interceptor receives all those equal messages. To overcome the single instance execution

problem, the interceptor has to analyse these messages and to make sure only one of all

equal messages is forwarded to the client.

Furthermore, the interceptor program should be capable of dynamic group recon�gura-

tion. This could be achieved with help of the Transis daemon. This daemon is aware of

group con�guration changes and sends noti�cations to the interceptor. The interceptor

code has to handle those messages and to help in setting up new members in the MDS

group properly.

Finally, the client code has to be adjusted to allow failover to new group members and to

avoid it to broken group members that no longer remain in the MDS group and therefore

not share the global state anymore.

2.4 Final System Design

Due to the di�culties pointed out in Section 3.3, the proposed preliminary design of the

prototype has to be adjusted to the needs of Lustre. To meet the requirements of the

project, two prototype designs have been developed.

2.4.1 Prototype 1

The �rst prototype design will replicate the MDS in an active/active fashion and is

capable of dynamic group recon�guration.

30

2.4. Final System Design

distribute
requests,

filter responses

MDS
10.0.0.5
Port 988

MDS 1

Client

Interceptor
10.0.0.10
Port 988

Client
Port 988

MDS
10.0.0.6
Port 988

MDS 2

Interceptor
10.0.0.11
Port 988

Figure 2.13.: Prototype 1

This redesign of the preliminary prototype will sort out a couple of problems caused by

Lustre limitations. The problems solved are the following:

• no use of individual ports for Lustre components

• no routing of Lustre messages

• in�exible Lustre system con�guration

The preliminary prototype runs the Lustre MDS and the interceptor process together

on one node. Each process opens an individual port for incoming communication. This

is needed to distinguish between both communication paths and to route messages to

the individual components. Lustre's limitation to use only port 988 for all components,

renders the proposed solution impossible. There is no way of con�guring a client node

31

2. Preliminary System Design

to connect to the interceptor (e.g. port 8000). One possibility to solve this problem

is to start the interceptor process on an own node. This way the interceptor could be

started on port 988 as well. The client can be con�gured to expect the MDS on the

interceptor node and to connect to this node. The downside of this solution is a signif-

icant performance impact. The communication from the interceptor to the MDS isn't

local anymore, but goes now over the network. Also an own node for each interceptor

is needed. This is not reasonable to do. The better solution to this problem is to make

use of IP aliasing. With IP aliasing two network addresses can be bound to one network

card. The advantage is that each address has its own ports and the communication be-

tween both addresses is still local. The latency time caused by communication between

the both addresses is minimal (see performance tests for details in Section 3.4.2).

Using IP aliasing two addresses (e.g. 10.0.0.5 and 10.0.0.10) can be run on one node

with one network card. That way the port 988 can be used for both servers. The MDS

runs on address 10.0.0.5 and the interceptor runs on address 10.0.0.10.

Lustre itself can be con�gured as described in Section 3.1. The XML �les need to be

edited in a way that the interceptor is the client for the MDS and vice versa. If con�gured

properly, the Lustre MDS and clients accept messages from the interceptors.

In order to provide full HA functionality and to avoid dropped messages due to routing,

the prototype must make use of the message routing principles described in Section 4.1.

To provide a complete HA solution the prototype needs to be capable of dynamic group

recon�guration. With this functionality the prototype is able to start and join new MDS

nodes in order to replace failed group members or to increase the level of availability.

The other task of dynamic group recon�guration is to deal properly with failing group

members. This technology and its implementation are described in Section 4.3.

Finally, the single instance execution problem is solved using a shared connection table.

This approach is described in more detail in Section 4.2.

The milestones listed in Section 1.4 are used to judge the project progress. Below listed

are the milestones that are ful�lled with functionality provided by this prototype design:

• A4 solution for single instance execution problem

32

2.4. Final System Design

• A5 MDS service stays available, as long as one node is up

• B6 replication of the MDS on more than two nodes

• B8 new MDS nodes can dynamically join

2.4.2 Prototype 2

distribute
requests,

filter responses

MDS
10.0.0.5
Port 988

MDS 1

Interceptor
10.0.0.6
Port 988

MDS
10.0.0.7
Port 988

MDS 2

Interceptor
10.0.0.8
Port 988

Interceptor
10.0.0.2
Port 988

Client

Client
10.0.0.1
Port 988

Figure 2.14.: Prototype 2

This prototype design is an extension of the Prototype 1. The �rst prototype still su�ers

from a lack of connection failover. This problem causes errors to clients if the connected

MDS fails. To mask this kind of error from the user (client) is task of this prototype

design. The connection failover procedure is described in more detail in Section 4.4.

33

2. Preliminary System Design

In order to mask this error from the user, the client has to reconnect to another available

MDS interceptor. Therefore, the client needs to hold a list of available MDS interceptors.

Due to the already mentioned reasons in Section 2.2.1 it is not reasonable to implement

the needed functionality into the client code directly. The better solution is to use IP

aliasing for the client as well. Thus, the client has its own interceptor.

This client interceptor routes the client messages directly without the use of Transis

according to Section 4.1. The only di�erence is that the client interceptor forwards the

messages to the chosen MDS interceptor instead to the MDS.

To get Lustre working with client interceptors as well, it has to be con�gured in a

di�erent way. The exact con�guration is described in Section 3.1.

The additional milestones that are ful�lled by this prototype design are:

• B7 client connects to other MDS node if own fails

• B9 client table of MDS nodes is updated at runtime

This prototype design is capable of all proposed criteria and meets all requirements of

the project.

34

3
Implementation Strategy

3.1 Lustre Con�guration

The Lustre �le system is con�gured with one XML �le. This �le is generated with help of

a con�g script. The script used to con�gure Lustre for the development of the prototype

is shown in Figure 3.1.

First, the user has to de�ne all nodes the �le system will use. The development setup

uses three nodes (mds1, ost1, usr1). The next step is to de�ne the network names of the

nodes. For easy handling they should be the same, like the node names. Now, the �le

system components can be con�gured and assigned to the nodes. In the development

setup node mds1 is con�gured as MDS. Node ost1 runs two OSTs (ost1 and ost2).

All OSTs are bound together to one Logical Object Volume (LOV). For the MDS and

OSTs, partitions for saving the �le system metadata and data must be speci�ed. For the

prototype development �les instead of partitions are used. The needed size of the �le

can be speci�ed. After creation the �les are mounted and behave like partitions. The

last thing to con�gure, are the clients. The client node must know what LOV, MDS,

and mount point to use.

The port each component uses for incoming connections can be edited directly in the

XML �le or in the con�g script with the option �port, e.g., to choose port 8000 the phrase

��port 8000� has to be put into the con�guration line of the component. However, these

con�gurations are completely ignored. Lustre uses one port number given in the source

code for all components.

After the �le system is con�gured the script can be run and Lustre generates the XML

35

3. Implementation Strategy

#!/ bin / sh

Sc r i p t c on f i gu r i n g Lustre on three nodes

rm −f c on f i g . xml

Create nodes
lmc −m con f i g . xml −−add node −−node ost1
lmc −m con f i g . xml −−add node −−node mds1
lmc −m con f i g . xml −−add node −−node usr1

Add net
lmc −m con f i g . xml −−add net −−node ost1 −−nid ost1 −−nettype tcp
lmc −m con f i g . xml −−add net −−node mds1 −−nid mds1 −−nettype tcp
lmc −m con f i g . xml −−add net −−node usr1 −−nid usr1 −−nettype tcp

Conf igure MDS
lmc −m con f i g . xml −−add mds −−node mds1 −−mds mds1 −−f s t ype l d i s k f s \

−−dev / l u s t r e t e s t /mds−mds1 −−s i z e 500000

Conf igure LOV
lmc −m con f i g . xml −−add lov −−l ov lov1 −−mds mds1 −−s t r ip e_sz 1048576 \

−−s t r ipe_cnt 0 −−s t r ipe_pat te rn 0

Conf igure OSTs
lmc −m con f i g . xml −−add os t −−node ost1 −−l ov lov1 −−f s t ype l d i s k f s \

−−dev / l u s t r e t e s t / ost1 −−s i z e 1000000 −−os t os t1
lmc −m con f i g . xml −−add os t −−node ost1 −−l ov lov1 −−f s t ype l d i s k f s \

−−dev / l u s t r e t e s t / ost2 −−s i z e 1000000 −−os t os t2

Conf igure c l i e n t
lmc −m con f i g . xml −−add mtpt −−node usr1 −−path /mnt/ l u s t r e −−mds mds1 −−l ov lov1

Figure 3.1.: Lustre Con�guration Script

�le. The name of the XML �le is also de�ned in the con�g script. This XML �le has to

be used to start up every node in the �le system. First the OSTs, then the MDS, and at

last the clients. The from the con�g script generated XML �le is appended in Section

A.3.

Now, a normal Lustre setup like shown in Figure 2.10 is con�gured. To get Lustre

working with interceptors the con�guration has to be adjusted.

In spite of Lustre's rule to use the same XML �le for all nodes, a XML �le for every

node needs to be created. The approach to write an own con�g script for every node

and to generate the di�erent XML �les doesn't work, because Lustre generates di�erent

UUID keys for the same nodes and the �le system refuses its own messages. The way

to go is to edit the XML �le directly. The important points are the nid tags in the

36

3.2. Messaging Mechanisms

�le. The nid tag holds the network name (or network address) of the de�ned node. The

network names of all available nodes are de�ned and assigned to IP addresses in the �le

/etc/hosts. Lustre uses the network names given in the nid tags to address the �le

system components. These nid tags need to be adjusted to the desired setup.

Changes in the respective XML �le of the components in case of Prototype 1 (see Figure

2.13):

• OST: no changes

• MDS: nid of Client node needs to be changed to MDS interceptor

• Client: nid of MDS node needs to be changed to MDS interceptor

Changes in the respective XML �le of the components in case of Prototype 2 (see Figure

2.14):

• OST: no changes

• MDS: nid of Client node needs to be changed to MDS interceptor

• Client: nid of MDS node needs to be changed to Client interceptor

3.2 Messaging Mechanisms

The communication of the prototype is realized via sockets. The TCP protocol is used.

The implementation of the communication could be done in various di�erent ways. Goal

is to �nd the fastest and most stable solution.

One general question is what type of sockets to use. Both, blocking/non-blocking sockets

have been tested during the development of the prototype.

Non-blocking sockets have the advantage that the server doesn't wait for a message on

one socket and blocks until a message arrives. This behaviour could improve performance

due to no delay times on other sockets with already waiting messages. However, blocking

37

3. Implementation Strategy

Interceptor

Client

MDS

Figure 3.2.: Message Forwarding using one Thread

sockets have the advantage that they are very likely to deliver and receive the complete

message. This results in easier handling.

Another important fact is that blocking sockets are more performance friendly. In a

non-blocking receive procedure the program polls the socket until a message arrives. For

this process the program uses the cpu all the time. In a blocking receive procedure the

process is set sleeping until the message arrives. This saves resources as it gives the cpu

free for other tasks.

The decision for the prototype implementation falls to blocking communication. The

downside of blocking communication, the possibility of blocking and waiting for one

socket and ignoring another with already available messages is sorted out with the use

of the select system call. The select call listens to all given sockets for incoming data.

If one socket has a message available, select gives this socket back to the program. The

program just has to go to the socket and can get the message. Using select there is no

blocking of sockets because every time a socket is called it is ensured the socket has a

message available. Of course, the select call is blocking itself. Thus, the process is set

to sleep if no messages are available and no cpu time is wasted.

38

3.2. Messaging Mechanisms

Interceptor

Client

MDS

Figure 3.3.: Message Forwarding using Multithreading

If select gives back a socket, it is most likely that one complete message can be pro-

cessed. This is due to Lustre's behaviour to send one request in one message. Before the

message is sent, Lustre assembles all data and sets up the header and puts the request in

the payload. Also the size of the message is limited by Lustre (Payload max. 4KB, see

Section 2.1.2). When the select call gives a socket back to the program, the message

has arrived at the socket. Now, the header and the payload can be read out. If the

message is received without error it can be routed to its destination.

The other decision to make is how to use threads. One possibility is to use only one

thread. This thread deals with all connections. Figure 3.2 shows this method in the

example of the three connections of one client. Here, one select call checks all sockets

for incoming messages. This method works comletely in serial. It has the disadvantage of

worse performance in relation to multiple threads for communication and the advantage

of easier code structure.

The other approach is to use one thread per communication path. Figure 3.3 shows

this method. For each connection a thread is started. This thread holds two sockets

controlled by a select call. The select call checks whether the client or the MDS

39

3. Implementation Strategy

wants to send a message. The advantage is that all connections can be processed in

parallel. This approach is faster than the serial one with only one thread. It would

be the preferred method for direct routing. However, the performance plus due to this

method is minimal and tests have shown no signi�cant di�erence between both methods.

For the prototype design the �st method using one thread for communication has been

chosen. The reason is Transis. The interceptor needs to route all messages through

Transis. Transis however runs not stable in a multithreaded environment and is likely

to produce errors. With the help of mutual exclusion locks the Transis calls have to be

serialised. Thus, the entire communication of the interceptor is inherently serial and the

single threaded method can be chosen anyway.

3.3 Implementation Challenges

The design of Lustre is complex and tightly integrated. This makes adjustments to the

prototype design di�cult.

Implementation challenges for prototype development:

• no use of individual ports for Lustre components

• in�exible Lustre system con�guration

• no routing of Lustre messages

• distributed locking mechanisms within Lustre

• existing active/standby failover behaviour of the MDS

• only three connections per node allowed

No use of individual ports for Lustre components

Lustre allows to con�gure the port for components individually in its con�g �le. However,

this capability is kind of leftover from former Lustre versions and not used anymore.

Now, Lustre uses one hard coded port. As a result, it is not possible to assign individual

ports to components.

40

3.3. Implementation Challenges

This limitation has a signi�cant impact on the preliminary design. Solution to this

problem is the use of IP aliasing as described in Section 2.4.

In�exible Lustre system con�guration

Lustre needs to know its setup in advance. A con�g script is therefore written, con�g-

uring the entire �le system. From this con�g script a XML �le is generated. This XML

�le is used to start Lustre.

Due to the Lustre security concept only messages from nodes con�gured in the XML �le

are allowed. The problem is that in a normal Lustre con�guration all messages from the

interceptors are rejected. To get Lustre working with interceptors the �le system must

be con�gured di�erently and not in the intended way. How this con�guration is done is

described in Section 3.1.

No routing of Lustre messages

As part of the Lustre security concept routing of messages is forbidden. Messages that

are not sent directly are dropped.

To route messages is essential for the prototype. To be able to route messages the

prototype has to look into the messages and to trick Lustre. It has to adjust the messages

in a way that Lustre thinks the messages are sent directly. This procedure is described

in Section 4.1.

Distributed locking mechanisms within Lustre

Lustre uses only one MDS to serve thousands of clients. To hold the metadata state of

the �le system consistent distributed locking mechanisms are used.

These mechanisms however cause problems in the setup of an MDS group. The problems

to implement an active/active MDS group are described in more detail in Section 4.3.

Existing active/standby failover behaviour of the MDS

Lustre provides an active/standby HA solution. In the scope of this solution it is possible

to shutdown the running MDS and to start the backup MDS. The shutdown is useful to

commit all pending requests to disk.

The problem is that only one MDS can be running at a given time. It is not possible to

start the backup MDS as long as the active MDS is still running. The other problem is

41

3. Implementation Strategy

that only two MDS can be con�gured. These limitations render the setup of the MDS

group impossible. To run a proper MDS group in an active/active fashion, it is needed

to start and run two and more MDS at the same time.

These limitations also prevent the dynamic group recon�guration from proper function-

ality.

Only three connections per node allowed

Lustre is designed to accept only three connections from one IP address.

This causes problems to run the prototype with multiple clients. In the prototype

design all clients are routed through one interceptor. This would lead to more than

three connections from the interceptor IP address. If a second client connects to Lustre,

the interceptor opens a fourth, �fth and sixth connection to the MDS. This would kick

out the �rst three connections of the �st client. To overcome this problem one interceptor

on the MDS side for each client would be needed. This is not reasonable to do. As a

result, the prototype design and tests use just one client.

3.4 System Tests

The process of software testing is used to identify the correctness, completeness and

quality of the developed software. Testing is nothing more but criticism and comparison

towards comparing the state and behaviour of the software against a speci�cation. [1]

The speci�cation for the prototype is given in the beginning of this work in Section 1.4.

All tests are performed in a dedicated cluster environment setup for the development and

tests of the Lustre HA prototype. Each node in the cluster has the following properties:

• Hardware

CPU Dual Core Intel Pentium 4 3.0GHz

Memory 1024MB

Network Ethernet 100MBit/s and 1GBit/s, full duplex

42

3.4. System Tests

• Software

Operating System Fedora Core 4

Kernel Red Hat 2.6.9-42.0.3, patched with Lustre

C Compiler gcc version 3.4.2 (Red Hat 3.4.2-6.fc3)

Transis daemon and library version 1.03, patched with Fast Delivery Protocol

Lustre version 1.4.8

To evaluate the prototype and its components di�erent setups of the �le system and

prototype are used. The following listed prototype con�gurations are especially valuable

for performance tests.

• Standard Lustre

• MDS Interceptor

• Client Interceptor

• MDS Interceptor and Client Interceptor

• Prototype 1

• Prototype 2

Standard Lustre

This is the standard Lustre setup, as shown in Figure 3.4, without any changes or

manipulations. Lustre is con�gured as intended on three nodes. One node runs two

OSTs. The second node provides the MDS and the third node is the client of the �le

system and mounts Lustre. This setup is used to get the performance of the standard

�le system to determine the delay caused by the prototype.

MDS Interceptor

Additionally to the original Lustre, this setup uses one interceptor on the MDS side.

The setup is shown in Figure 3.5. The MDS interceptor makes no use of the group

43

3. Implementation Strategy

Figure 3.4.: Test Setup: Standard Lustre

MDS1

USR1

Interceptor
10.0.0.10

MDS
10.0.0.5

Client
10.0.0.1

Figure 3.5.: Test Setup: MDS Interceptor

communication facilities. Thus, only the delay time caused by the message routing

mechanisms on the MDS side can be measured.

Client Interceptor

This is a similar setup as the previous, except that this time the interceptor is located

44

3.4. System Tests

MDS1

USR1

MDS
10.0.0.5

Interceptor
10.0.0.12

Client
10.0.0.1

Figure 3.6.: Test Setup: Client Interceptor

on the client side, see Figure 3.6. Here again the interceptor makes no use of the

group communication facilities. With this con�guration the delay caused by the message

routing mechanisms on the client side can be measured.

MDS Interceptor and Client Interceptor

This setup is a combination of the last two. It makes use of both interceptors, see Figure

3.7. That way, the delay caused by the message routing mechanisms on the client and

the MDS side can be measured.

Prototype 1

This setup is the standard Lustre with use of an interceptor on the MDS side. This time

the interceptor routes the messages through Transis, see Figure 3.8. This setup should

allow to determine the delay caused by the group communication facilities. This setup

is tested in three di�erent steps. One time with one MDS group member, one time with

two, and one time with three. These con�gurations allow to measure the delay time

caused by the group communication facility itself as well as the impact of several group

members on the performance due to the acknowledgement process.

45

3. Implementation Strategy

MDS1

USR1

Interceptor
10.0.0.10

MDS
10.0.0.5

Interceptor
10.0.0.12

Client
10.0.0.1

Figure 3.7.: Test Setup: MDS Interceptor and Client Interceptor

Prototype 2

This test series uses both interceptors on the MDS and the client side respectively, see

Figure 3.9. The interceptor on the client side just routes the messages directly. The

interceptor on the MDS side routes the messages through the group communication

facilities. This test series measures the impact of up to three group members and allows

conclusions about the performance of a solution capable of connection failover.

The client node is used to test the �le system. Here the provided functionality of Lustre

is accessible. Files can be created, deleted, read, and written. The usage and the free

memory of the �le system can also be shown.

For the tests an own benchmark program has been written. Its source is provided in

Appendix A.2. The program creates, reads the metadata, and deletes a given number

of �les. It does this in a given number of test runs and builds the arithmetic mean

46

3.4. System Tests

MDS1

USR1

Interceptor
10.0.0.10

MDS
10.0.0.5

Process

Route
through
Transis

Client
10.0.0.1

Send/
Receive

M
es

sa
ge

s
M

es
sa

ge
s

MDS2

Interceptor
10.0.0.22

Route
through
Transis

Group
Communication

MDS3

Interceptor
10.0.0.23

Route
through
Transis

Group
Communication

Figure 3.8.: Test Setup: Prototype 1

values. From the measured times it calculates the operations per second the �le system

is capable of. It also calculates the time needed for one operation.

3.4.1 Functionality

Due to restrictions given by Lustre the functionality tests could only performed partwise.

Goal of this section normally should be to test and evaluate the proper functionality of

the prototypes in terms of high availability. However, a complete HA version of the pro-

totype implementations is not running. This limits the possibilities for the functionality

tests. For instance, connection failover cannot be tested. What can be done is to test

the developed parts of the solution for their proper functionality.

The functionality of the developed prototypes that can be tested:

• Message Routing, one MDS Node

• Group Communication System

47

3. Implementation Strategy

MDS1

USR1

Interceptor
10.0.0.10

MDS
10.0.0.5

Process

Route
through
Transis

Interceptor
10.0.0.12

Client
10.0.0.1

Route
directly

Send/
Receive

M
es

sa
ge

s
M

es
sa

ge
s

M
es

sa
ge

s

MDS2

Interceptor
10.0.0.22

Route
through
Transis

Group
Communication

MDS3

Interceptor
10.0.0.23

Route
through
Transis

Group
Communication

Figure 3.9.: Test Setup: Prototype 2

• Message Routing, multiple MDS Nodes

• Single Instance Execution Problem

• Mount Lustre

• Unmount Lustre

• Lustre File System Status

• File Operation: read

• Lustre File Operation: write

• Lustre File Operation: create

• Lustre File Operation: delete

48

3.4. System Tests

Message Routing, one MDS Node

This test evaluates the correct function of the message routing of the prototypes de-

scribed in Section 4.1 Message Routing. This part can be tested with the simplest test

setup �MDS Interceptor�. In this setup one interceptor is placed in the MDS commu-

nication path. The interceptor just forwards and adjusts the messages as described. If

the message routing works correctly, Lustre accepts the interceptor and mounts the �le

system. The same test must be done with client interceptor as well. Because the client

interceptor uses the same routing algorithm, Lustre should mount properly.

pass:

Group Communication System

The correct function and implementation of the group communication system into the

prototype also needs to be tested. This can be done in two steps. The �rst is to test the

group communication system alone on one node. For this test the setup �Prototype 1�

with one group member can be used. Here, the MDS interceptor uses Transis to route

the messages. If the group communication system is included correctly, the interceptor

should start the Transis �MDS Group� and Lustre should mount properly. The second

step is to start another interceptor on a second node. This interceptor should join the

�MDS Group� if everything goes right.

pass:

Message Routing, multiple MDS Nodes

This test is an extension of the �rst two tests. Here the setups �Prototype 1� and

�Prototype 2� with three group members are used. To evaluate if the message routing

of all three nodes works properly, own servers that act as MDS must be used. One

node starts the Lustre MDS. The other two nodes start their own server. These servers

open a connection at the port 988 and receive messages like the MDS would do. In this

step these own �fake� MDS servers check the message header for the correct source and

destination. To pass the test, Lustre should mount properly and the own servers should

receive messages as well and report no errors.

pass:

Single Instance Execution Problem

The correct function of this part can be tested with an extension of the own �fake�

49

3. Implementation Strategy

MDS servers. The same setups like in test �Message Routing, multiple MDS Nodes� are

used. The di�erence is, that the �fake� MDS bounce received messages back to their

interceptors. That way, they cause own output messages. If the single instance execution

problem is solved correctly, duplicated output messages should not be sent to the client

and thus not confuse Lustre. This test is passed if Lustre mounts and works properly.

pass:

The following tests show the proper functionality of the Lustre �le system with the

prototype implementations. For these tests the �Prototype 2� setups with three group

members is used. Also own �fake� MDS servers, as described in the �Single Instance

Execution Problem� test, are used. This setup is the closest possible to a working

production type HA solution for Lustre.

Mount Lustre

Lustre should be capable to mount without errors.

pass:

Unmount Lustre

Lustre should also be capable to unmount and to shutdown without errors.

pass:

Lustre File System Status

During use of Lustre the command �lfs df -h� should show the usage state of all OSTs

and the MDS.

pass:

File Operation: read

Test of the �le system capability to read �les.

pass:

Lustre File Operation: write

Test of the �le system capability to write to �les.

pass:

Lustre File Operation: create

Test of the �le system capability to create �les.

50

3.4. System Tests

pass:

Lustre File Operation: delete

Test of the �le system capability to delete �les.

pass:

The functionality listed below could not be tested. It is the HA functionality in general.

Due to the fact that it is impossible to run two MDS at the same time no real HA

solution could be tested.

The functionality of the prototype implementations that cannot be tested:

• dynamic group recon�guration

• connection failover

• saved state of �le system as long as one node is up

The results of the functionality tests give proof of working components, like interceptors

or the group communication system. But an entire HA solution of Lustre could not be

tested. Even though the working components do not provide the functionality of an HA

prototype, they nevertheless consist of almost everything a working solution would need.

The fact that Lustre is working with the implemented solution makes performance tests

possible. These tests will allow to draw conclusions about the impact a full working HA

solution would have on the performance of Lustre.

3.4.2 Performance

As described in the functionality tests the prototypes do not provide the full functionality

of a HA solution. However they are very close to this solution in terms of performance.

A full working HA prototype would have almost the same impact on performance, like

the implemented Prototype 2 in this project. Thus, these tests allow considerations

about the performance a full HA solution.

Tested are the di�erent setups described in the beginning of the test section.

51

3. Implementation Strategy

For all performance tests the �le system cache was deactivated. This step is essential to

compare the performance of the di�erent test setups. All tests have been done in two

di�erent network setups. One time with 100MBit and one time with 1GBit network.

To evaluate the performance a benchmark program has been written. The source of

the program is attached to this work in Appendix A.2. The program creates a given

number of �les, reads the metadata of the �les, and eventually deletes the �les. In order

to evaluate the performance the program takes the time needed for each operation. To

achieve a measurement with a low error the program performs a given number of test

runs and calculates the mean time for each operation from all test runs.

Lustre High Availability Prototype 100MBit Test Runs

Operations per second
100 Mbit

1 file 100 files
create read delete create read delete

Standard Lustre 538.199 462.389 1,129.114 551.799 452.459 1,721.659
MDS Interceptor 6.196 23.632 12.352 8.184 12.205 24.437
Client Interceptor 6.187 22.908 12.368 8.178 11.978 24.349
Client Int. and MDS Int. 6.163 23.386 12.290 8.135 12.136 24.314
Prototype 1, 1 Group Member 6.103 11.840 12.165 8.030 8.052 24.064
Prototype 1, 2 Group Members 6.104 11.846 12.170 8.026 8.060 23.775
Prototype 1, 3 Group Members 6.108 11.844 12.165 8.025 8.062 23.964
Prototype 2, 1 Group Member 6.056 11.758 12.094 7.966 8.051 23.895
Prototype 2, 2 Group Members 6.051 11.732 12.047 7.964 8.045 23.889
Prototype 2, 3 Group Members 6.037 11.782 12.092 7.918 8.046 23.894

Time taken for one operation
(msec)

100 Mbit
1 file 100 files

create read delete create read delete
Standard Lustre 1.858 2.163 0.886 1.812 2.210 0.581
MDS Interceptor 161.403 42.315 80.957 122.191 81.936 40.921
Client Interceptor 161.637 43.653 80.854 122.285 83.485 41.069
Client Int. and MDS Int. 162.248 42.760 81.370 122.929 82.401 41.129
Prototype 1, 1 Group Member 163.859 84.463 82.202 124.538 124.186 41.557
Prototype 1, 2 Group Members 163.827 84.418 82.172 124.593 124.074 42.061
Prototype 1, 3 Group Members 163.707 84.433 82.202 124.607 124.041 41.729
Prototype 2, 1 Group Member 165.125 85.050 82.686 125.529 124.211 41.849
Prototype 2, 2 Group Members 165.248 85.240 83.009 125.558 124.299 41.860
Prototype 2, 3 Group Members 165.647 84.874 82.698 126.298 124.290 41.852

Figure 3.10.: Performance Test Results 100MBit

The results of the test runs are shown in the Tables 3.10 and 3.11. At �rst glance

the signi�cant performance impacts of all HA solutions are striking. The default Lustre

setup performs up to 89 times faster than the tested prototype setups. This performance

impact is odd and not expected. The JOSHUA project [21] achieved latency times of

52

3.4. System Tests

Lustre High Availability Prototype 1GBit Test Runs

Operations per second
1 Gbit

1 file 100 files
create read delete create read delete

Standard Lustre 622.247 550.658 1,330.973 636.749 520.497 1,951.101
MDS Interceptor 6.212 23.828 12.380 8.206 12.288 24.485
Client Interceptor 6.196 22.219 12.382 8.194 11.880 24.379
Client Int. and MDS Int. 6.169 23.300 12.312 8.152 12.177 24.331
Prototype 1, 1 Group Member 6.181 12.710 12.314 8.157 8.252 24.359
Prototype 1, 2 Group Members 6.140 12.038 12.221 8.082 8.179 24.238
Prototype 1, 3 Group Members 6.128 11.939 12.207 8.067 8.138 24.209
Prototype 2, 1 Group Member 6.138 12.144 12.248 8.106 8.217 24.224
Prototype 2, 2 Group Members 6.091 11.926 12.156 8.023 8.134 24.037
Prototype 2, 3 Group Members 6.086 11.900 12.142 8.010 8.125 24.021

Time taken for one operation
(msec)

1 Gbit
1 file 100 files

create read delete create read delete
Standard Lustre 1.607 1.816 0.751 1.570 1.921 0.513
MDS Interceptor 160.984 41.967 80.776 121.855 81.383 40.841
Client Interceptor 161.394 45.007 80.765 122.038 84.173 41.018
Client Int. and MDS Int. 162.097 42.918 81.222 122.675 82.122 41.100
Prototype 1, 1 Group Member 161.786 78.680 81.211 122.598 121.184 41.052
Prototype 1, 2 Group Members 162.871 83.071 81.825 123.734 122.269 41.257
Prototype 1, 3 Group Members 163.193 83.762 81.919 123.964 122.882 41.308
Prototype 2, 1 Group Member 162.920 82.348 81.649 123.364 121.696 41.282
Prototype 2, 2 Group Members 164.165 83.850 82.263 124.646 122.937 41.602
Prototype 2, 3 Group Members 164.310 84.033 82.359 124.840 123.078 41.630

Figure 3.11.: Performance Test Results 1GBit

about 200ms. In the �Metadata Service for Highly Available Cluster Storage Systems�

project the latency times for one client are about 15ms, however these times result from

internal replication. The latency times from the JOSHUA project are gained with a

similar test setup like in this master thesis. Hence the 200ms form the mark of the

expected latency times.

The measured latency times in the test runs are in the range from 165ms - 40ms, de-

pending on the operation performed and network type used. This seems okay, but the

problem is the overhead caused to the �le system. The measured overhead to the system

in the JOSHUA project is 256% with four group members. The overhead of Prototype 2

with three group members using 100MBit network in comparison to the default Lustre

con�guration is about 8815%! Another possibility to compare this signi�cant impact is

to look at the request throughput achieved in the �Metadata Service for Highly Available

Cluster Storage Systems� project, see Figure 1.6. There, the �le system has a through-

53

3. Implementation Strategy

Delay Time of IP Aliasing

100MBit Network

Local Connection 29.483 µsec

IP Alias Connection 29.318 µsec

1GBit Network

Local Connection 29.458 µsec

IP Alias Connection 29.350 µsec

Table 3.1.: Delay Time of IP Aliasing

put of about 125 read requests with one client using one metadata server. With the

use of more metadata servers this throughput even increases due to the advantage of

parallelism. In case of four metadata servers the gained throughput of read requests per

second with one client is about 360.

Quite di�erent the results of the prototypes of this master thesis. The default Lustre

setup achieves a read request throughput of about 450 to 550 depending on the used

network and the number of �les to read in one test run. Of course, the advantage of

parallelism cannot be taken into account, because all prototype setups still work with

only one MDS. However, the measured values are by far under the expectations. For

instance in case of the Prototype 2 test run with 3 group members and use of 1GBit

network and 100 �les the read throughput breaks down from 520 to 8 requests per second.

Such a result renders the proposed HA solution unreasonable in terms of performance.

The performance results are contrary to the results of the preceding two HA projects.

The experience from the preceding projects shows that HA solutions don't come for free,

but the performance impact is reasonable and the advantage of higher availability out-

weighs this downside. This is not the case in this project. The latency times introduced

by the prototypes are too high to use the Lustre �le system in a reasonable way. This

raises the question for the reasons of these high latency times.

To gain a better understanding of the measured values, tests to evaluate the pure network

performance of the test cluster are useful. Also a check of the caused delay by the IP

54

3.4. System Tests

100MBit Network Latency

Client-Server

S i z e Latency Bandwidth
10 B 200.05 us 49 .99 KB/ s

100 B 149.93 us 666 .98 KB/ s
1 .00 KB 284.30 us 3 .52 MB/ s

10 .00 KB 1.90 ms 5 .25 MB/ s
100 .00 KB 22.28 ms 4 .49 MB/ s

1 .00 MB 218.34 ms 4 .58 MB/ s
10 .00 MB 2.29 s 4 .38 MB/ s

Client-Interceptor-Server

S i z e Latency Bandwidth
10 B 343.57 us 29 .11 KB/ s

100 B 150.62 us 663 .92 KB/ s
1 .00 KB 314.57 us 3 .18 MB/ s

10 .00 KB 1.94 ms 5 .16 MB/ s
100 .00 KB 21.93 ms 4 .56 MB/ s

1 .00 MB 219.71 ms 4 .55 MB/ s
10 .00 MB 2.30 s 4 .35 MB/ s

Client-Interceptor-Interceptor-Server

S i z e Latency Bandwidth
10 B 352.65 us 28 .36 KB/ s

100 B 178.42 us 560 .48 KB/ s
1 .00 KB 346.70 us 2 .88 MB/ s

10 .00 KB 1.99 ms 5 .03 MB/ s
100 .00 KB 22.72 ms 4 .40 MB/ s

1 .00 MB 226.96 ms 4 .41 MB/ s
10 .00 MB 2.32 s 4 .31 MB/ s

Table 3.2.: 100MBit Network Latency

aliasing is needed.

To measure the delay caused by the IP aliasing a simple test program can be written.

The program starts a server on the original node address on a given port. This server just

bounces back messages. Then the program establishes two connections to this server.

One time from the same local address and one time from the IP alias address. Now, the

program sends a sting to the server and measures the time it takes to receive the string

again.

Table 3.1 shows the results of this test. The delay times for the both connections are

almost the same. Also the network types make no di�erence. This was expected, because

the communication happened only local without use of the network. As Table 3.1 shows,

the use of IP aliasing causes no considerable delays and thus cannot be the source of the

signi�cant performance problems of the prototype.

55

3. Implementation Strategy

1GBit Network Latency

Client-Server

S i z e Latency Bandwidth
10 B 102.29 us 97 .76 KB/ s

100 B 237.95 us 420 .26 KB/ s
1 .00 KB 193.60 us 5 .17 MB/ s

10 .00 KB 332.54 us 30 .07 MB/ s
100 .00 KB 1.85 ms 53 .93 MB/ s

1 .00 MB 17.15 ms 58 .30 MB/ s
10 .00 MB 170.12 ms 58 .78 MB/ s

Client-Interceptor-Server

S i z e Latency Bandwidth
10 B 337.11 us 29 .66 KB/ s

100 B 126.84 us 788 .39 KB/ s
1 .00 KB 175.89 us 5 .69 MB/ s

10 .00 KB 384.31 us 26 .02 MB/ s
100 .00 KB 2.06 ms 48 .48 MB/ s

1 .00 MB 19.47 ms 51 .36 MB/ s
10 .00 MB 196.76 ms 50 .82 MB/ s

Client-Interceptor-Interceptor-Server

S i z e Latency Bandwidth
10 B 353.49 us 28 .29 KB/ s

100 B 156.73 us 638 .04 KB/ s
1 .00 KB 205.82 us 4 .86 MB/ s

10 .00 KB 420.77 us 23 .77 MB/ s
100 .00 KB 2.28 ms 43 .77 MB/ s

1 .00 MB 21.81 ms 45 .85 MB/ s
10 .00 MB 222.89 ms 44 .86 MB/ s

Table 3.3.: 1GBit Network Latency

The next step is to measure the delay times caused by the network. Therefore, the

latency time of the di�erent network paths must be measured. This is done with another

test program. This program sends byte packages of increasing size over the given network

path. It measures the latency time caused by the network and calculates the bandwidth

of the connection.

Considering the size of metadata messages, the test runs show that the latency time of

the network lies in the range of milliseconds. This is even the highest possible latency

time. Average metadata messages of Lustre are not bigger than 1KB. For the Gigabit

network test, this latency time even for the longest path was not much more than 200

µs. So the network is unlikely to be the reason causing the performance issues of the

prototypes.

The IP aliasing and the network itself are not the reason for the high latency times.

56

3.4. System Tests

Another possibility is the implementation of the prototypes itself.

The core component of the prototypes is the message routing. The proper functionality

of this component is proven in Section 3.4.1. In terms of performance the problems

discussed in Section 3.2 are essential. All of the di�erent mentioned approaches have

been tested. The parallel approach is a bit faster than the serial used in the performance

tests. However, the gained performance plus is so little, that it makes no real di�erence in

the measured values of the performance tests. As a result, the prototype implementations

show no errors responsible for causing the signi�cant performance impact.

The last possibility of the performance problems is the Lustre code itself. The �le system

cache has been deactivated in order to get consistent results. But due to the complex and

intransparent design, it is likely that Lustre uses internally techniques that are blocked

by the interceptors and thus cause the performance impact. However this is speculation

and cannot be proven.

In spite of the performance problems it is worth to take a closer look at the measured

values.

The general trend of the measured values is alright. The test runs performed on 1Gbit

network give lower latency times/more operations per second than the test runs per-

formed on 100MBit network. The read operation performs better if called only one

time, like in case of the 1 �le test runs. Quite the contrary the create and delete oper-

ations. They achieve better results if called several times like in the 100 �les test runs.

The delete operation achieves twice the throughput in the 100 �les test runs than in the

1 �le test runs. This can be the result of internal caching in the MDS of Lustre. The

MDS, for instance, caches several requests in memory before it commits them to disk.

This behaviour cannot be avoided.

However, there are some inconsistencies in the values. For instance, the values of Proto-

type 1, using 100MBit network, 1 �le. Here the prototype achieves lower latency times

with three group members than with one. At �rst glace, this seem odd. But this could

happen with the �Fast Delivery Protocol� introduced in Section 1.2.2. The reason is

that every member in the group can acknowledge a message. In the test setups only one

group member actually runs a MDS the other group members only run an interceptor

with Transis. These nodes are less occupied than the one node running the MDS. They

57

3. Implementation Strategy

Figure 3.12.: 100MBit, 1File Test Runs

Figure 3.13.: 100MBit, 100Files Test Runs

58

3.4. System Tests

Figure 3.14.: 1GBit, 1File Test Runs

Figure 3.15.: 1GBit, 100Files Test Runs

59

3. Implementation Strategy

Figure 3.16.: File Creation Performance of Lustre

Figure 3.17.: File Creation Performance using MDS Interceptor and Client Interceptor

60

3.4. System Tests

just wait for incoming messages without any processing. It is likely that one of these

nodes can acknowledge a message faster than the one node running the MDS. This could

be the reason for the lower latency times with three group members than with one group

member.

Another inconsistency can be seen in the measured values of the interceptor latency

times. In the 1GBit, 1 �le, read command test run the measured performance of the

test setup with the client interceptor alone is 22.219 operations per second. However,

the measured performance of the test setup with client and MDS interceptor is 23.300

operations per second. This is not reasonable and should not happen. Source of this

error in the measurements might be changing occupation of the nodes due to other

running processes in the background or di�erent workload on the network during the

individual test runs.

The Figures 3.16 and 3.17 show a di�erent behaviour of the default Lustre setup in

contrast to the �le system with included interceptors. As shown in the �gures, the

advantage of the faster Gigabit network is much bigger in the default Lustre setup. This

result also indicates some problems with the correct adaptation of the interceptors to

the �le system.

To summarise, the measured values show some light inconsistencies, but nevertheless

appear to be okay. The major result of the test runs is the big performance impact of

the prototype designs on the �le system. This impact renders the proposed HA solution

unreasonable in terms of performance. The source of the signi�cant latency times is

most likely to �nd in the �le system code itself. To fully understand the reason of the

performance impact, Lustre needs to be analysed and understood completely. This is

not possible in the limited time of this master thesis and therefore the reason of the

performance impact remains a speculation.

61

4
Detailed Software Design

4.1 Message Routing

Core component of the prototype design is the message routing. This component is

responsible for managing the connections and routing the messages to the appropriate

nodes.

Connection Table

Message
Type

MDS Socket
ID

Client Socket
ID

Client IP
Address

Connection
Lock

Message
Type

MDS Socket
ID

Client Socket
ID

Structure
Information

Client IP
Address

Connection
Lock

Number of
Connections

Connection
Entry 1

Connection
Entry 2

...

...

Entry ID Entry ID

Figure 4.1.: Connection Table

Figure 4.1 shows the connection table structure. This structure is responsible for holding

and maintaining all connection information. Because the connection table is a shared

resource it needs to be locked. Mutual exclusion locks are used for this purpose. They

avoid simultaneous access from the Transis receive thread and the interceptor receive

thread. This is most important, because each thread can manipulate the allocated mem-

63

4. Detailed Software Design

ory of the connection table. As a result, simultaneous access could lead to segmentation

fault and crash of the program.

Each interceptor holds an own connection table. In order to keep the information con-

sistent between all connection tables the group communication system is used.

The initiation of a connection is always the same process. Fist, each interceptor listens

for incoming connections from the clients. If one interceptor gets an incoming connection

it creates an entry in its connection table. In this step it stores the socket identi�er of

the client connection in this entry. The interceptor also sets the connection lock of

this entry. This should prevent further message routing until the connection is fully

established. Then, the interceptor uses the group communication system to send the id

of the entry and the request to connect to the MDS. All interceptors, the sending one

included, receive this request. All create the connection to their respective MDS. The

socket identi�er of this connection needs then to be stored in the table entry associated

with the id sent in the request. Also, the connection lock of this entry must be unset

after successful connection to the MDS. The interceptor connected to the client already

holds an entry with this id in the connection table, and just adds the socket identi�er

of the MDS connection to this entry. It also unsets the connection lock. All other

interceptors create a new entry with this id and add the socket identi�er of their MDS

connection. The connection lock is already unset in the new created entries.

The other information stored in the connection table is the IP address of the client. This

information is not needed in the actual prototype implementations, but could be used

to identify the client in case of connection failover. The use of the �eld Message Type

is described later in this section.

If one client disconnects, the procedure to perform is similar to the connection process.

Fist, the interceptor connected to this client sends a request to disconnect to the group

communication system. After the connections are closed the appropriate table entries

are deleted.

Figure 4.2 shows the connection state of a setup with three group members and one client.

The client uses three connections for communication. Each connection is associated with

one table entry. The only information needed to route each individual message are the

id of the related connection table entry and the destination of the message (CLIENT or

64

4.1. Message Routing

Interceptor

Client

MDS

Connection 1

Connection 1 Connection 3Connection 2

Connection 2 Connection 3

Socket

SocketSocketSocket

Socket Socket

Transis

Interceptor

MDS

Connection 1 Connection 2 Connection 3

SocketSocketSocket

Transis

Interceptor

MDS

Connection 1 Connection 2 Connection 3

SocketSocketSocket

Transisdistribute requests distribute requests

Figure 4.2.: Message Routing, Request from Client to MDS

MDS) to determine the direction.

In case of a message or request from the client to the MDS, the interceptor connected

to the client receives the message. It then adds the needed routing information to

the message and passes the message on to Transis. The group communication system

distributes the message to all interceptors. They receive the message and read the routing

information. The destination MDS tells them to choose a MDS socket and the entry id

determines what connection to use. With help of this information the interceptors can

pass on the message to the appropriate MDS connections.

Interceptor

Client

MDS

Connection 1

Connection 1 Connection 3Connection 2

Connection 2 Connection 3

Socket

SocketSocketSocket

Socket Socket

Interceptor

MDS

Connection 1 Connection 2 Connection 3

SocketSocketSocket

Interceptor

MDS

Connection 1 Connection 2 Connection 3

SocketSocketSocket

Figure 4.3.: Message Routing, Response from MDS to Client

In case of a response from the MDS to the client, all interceptors receive the response

from their MDS, see Figure 4.3. Only the interceptor connected to the client holds

65

4. Detailed Software Design

information about the client socket in the respective connection table entry. Thus, only

this interceptor passes the message on the client.

To meet the rules of Lustre's networking, messages need to be modi�ed. Each inter-

ceptor needs to adjust the message header, in a way, that it acts as client for the MDS

and vice versa. The important �elds to change are the message Source NID and the

Target/Destination NID, as described in Section 2.1.2. To avoid rejected messages from

Lustre the interceptor has to change the IP address in the Source NID to its own IP

address. Furthermore, it has to change the IP address in the Target/Destination NID

to the IP address of the client and the MDS respectively.

Because the positions of the NID �elds vary in the three di�erent Lustre message types,

the last �eld in a connection table entry is used. The �eld Message Type is set accord-

ingly to the Lustre protocol. That way, it is ensured that throughout the connection

initialisation the appropriate header type of the received message is known and the right

values are changed. After the initialisation process this �eld is no longer used, due to

the facts that only �Lustre Messages� are exchanges anymore.

4.2 Single Instance Execution Problem

Node C

Interceptor

MDS

Node B

Interceptor

MDS

Node A

Interceptor

MDS R
es

po
ns

e
R

eq
ue

st

Process

Receive

R
es

po
ns

e
R

eq
ue

st

Process

Receive

R
es

po
ns

e
R

eq
ue

st

Process

ReceiveGroup
Communication

Group
Communication

R
eq

ue
st

Figure 4.4.: Single Instance Execution Problem

66

4.2. Single Instance Execution Problem

Node C

Interceptor

MDS

Interceptor

Node B

Interceptor

MDS

Interceptor

Node A

Interceptor

MDS

Interceptor

Send

Process

Receive

Send

Process

Receive

Send

Process

ReceiveGroup
Communication

Group
Communication

Group
Communication

Group
Communication

R
eq

ue
st

R
es

po
ns

e
R

es
po

ns
e

R
es

po
ns

e
R

eq
ue

st

R
es

po
ns

e
R

eq
ue

st

R
eq

ue
st

Figure 4.5.: Single Instance Execution Problem Solved

In an active/active architecture the replicated components work independent from each

other. The group communication system distributes the incoming requests in the right

order to the group and holds thus the group members in virtual synchrony. The prob-

lem here is that each member produces a response and wants to send this response to

the system. The system however expects only one response to one request. Multiple

responses are dropped in the best case or lead to inconsistencies, or crash in the worst

case.

To sort out this problem, the group communication system has to be used again. As

indicated in Figure 4.4, it has to be set between the output of the MDS and the rest

of Lustre. In this position, it has the task of �ltering all requests and sending only one

back to Lustre.

In the prototype implementation, this problem is solved with help of the connection

table described in Section 4.1. This table holds identi�ers of existing client connections.

When a response is received the group members look in the connection table for an

appropriate client connection. Only the group member actually connected to the client

67

4. Detailed Software Design

sends the response to the system. The other members drop their request. Because one

client is connected to one group member only, the response is sent only once to the

system. Thus, the connection table can be used to �lter the responses.

Another possibility to sort out this problem is to send the responses through the group

communication system �rst. The group communication system distributes the responses

to all group members. This raises the problem that the group member connected to the

client gets the responses from the other group members as well. In this situation an

identi�er to recognize all equal responses from the group members is needed.

The approach to send all responses through the group communication system has an

advantage. It could be used to detect errors in the response. This may be achieved with

help of voting algorithms. Possibilities are for instance majority or unanimous voting

algorithms. Fist, all responses from the group members need to be compared. In case

of a majority voting algorithm all equal responses are counted. One response from the

group with the highest number of equal responses is sent back to the system. All other

responses are dropped. In case of a unanimous voting algorithm all responses have to be

the same. If only one response di�ers from the others, not response at all is sent back

to the system.

4.3 Dynamic Group Recon�guration

Dynamic group recon�guration is essential for running a group of members in an ac-

tive/active fashion. Normally the system is started with one group member. In case of

Lustre the �le system is started, like intended, with one MDS. In order to build up the

active/active group new members (MDS) must join.

The sense of HA is to provide uninterrupted service. To realize this goal the active/active

group must be able to be recon�gured at runtime. If members fail they must be repaired

or replaced with new ones. This functionality provides dynamic group recon�guration.

The group communication system Transis keeps track of active group members. If the

con�guration of the group changes it sends a message with the new con�guration. This

message can be used to initiate the appropriate recon�guration procedure.

68

4.3. Dynamic Group Recon�guration

The process of leaving members is simple. Because all members share the same state

they can continue operation without new recon�guration. The only thing to do, is to

update the group member list of the client interceptors to avoid failover to broken group

members that no longer share the global state.

To keep the state of the active/active group during the join process consistent the fol-

lowing steps must be performed in the right order:

1. stop all members from accepting requests

2. copy the group state from one elected member to the new member

3. start accepting requests again

Fist, all members must stop to accept new requests from the clients. Now an elected

member has to send his state to the new member. This can be done with copying the

partition in which the MDS data is stored to the new member. Now the entire group is

in virtual synchrony again and can start to accept requests.

If something goes wrong during the join process, the new member shuts down itself to

ensure that no member is online which does not share the exact same global state in

order to sustain the virtual synchrony.

The design of Lustre raises some issues that avoid successful implementation of this

capability in the prototype.

One problem could occur with server timeouts. During the whole join process the MDS

is stopped, or better, occurs dead to the client. However this seems likely to be no

problem, because the Lustre MDS is designed for heavy load. Lustre already has a

similar problem when tens of thousands clients send requests to this one server at the

same time. In this case the server is under such heavy load that it appears dead to some

clients for minutes. To overcome this problem Lustre has already set the server timeout

to 100 seconds, and in some cases, like in the Lawrence Livermore National Laboratory

to 300 seconds.

Another problem to face is the reinitiation of connections to new MDS. Because Transis

is implemented externally and Lustre uses three active connections for one client, it's

69

4. Detailed Software Design

not enough to copy the state (partition) to the new MDS. The new group member

(interceptor) needs to connect the active clients to the new started MDS. Therefore the

state of connections must also be copied. To establish a connection the interceptor has

to follow the Lustre protocol. One possibility to solve this problem is to save the original

initiation messages of each connection and reuse them for new members.

Lustre's MDS also works with caching of requests. This is another source of inconsis-

tency. Because it is never ensured that the state on the disk (the partition) is the same

like the state in the RAM (the running MDS).

The main challenge is to start the new MDS. This point rendered the dynamic group

recon�guration impossible within the limits of this project. The Lustre design doesn't

allow two active MDS at the same time. For failover Lustre �rst shuts down the failed

MDS and starts then the new MDS. As long as one MDS is up, it is impossible to start

a second MDS. Even if this hurdle could be sorted out, the Lustre design still causes

plenty of problems. For example distributed locking and the fact that the MDS talks

with the OSTs. For one request, each MDS in the group would try to get the same lock

from the OSTs or try to create the same �le.

4.4 Connection Failover

Connection failover is an integral part in the HA solution. It ensures the masking of

errors to the connected clients. If a client is connected to a MDS and this MDS fails, the

client gets an error and cannot use the service anymore. The state is still saved as long

as another MDS is up. However, in an active/active HA solution uninterrupted service

should be provided.

Solution to the problem is connection failover. It is the ability of the client to change to

another active MDS.

To realize this solution, the client needs to hold a list of all available MDS. If the

connection to the MDS fails, the client looks in the list and connects to another MDS.

That way the error of a failing connected MDS is also masked from the client.

One problem with inconsistency could occur, when a request is already in the queue of

70

4.4. Connection Failover

MDS
10.0.0.5
Port 988

MDS 1

Interceptor
10.0.0.10
Port 988

MDS
10.0.0.4
Port 988

MDS 2

Interceptor
10.0.0.11
Port 988

Interceptor
10.0.0.12
Port 988

Client

Client
10.0.0.1
Port 988

MDS
10.0.0.5
Port 988

MDS 1

Interceptor
10.0.0.10
Port 988

MDS
10.0.0.4
Port 988

MDS 2

Interceptor
10.0.0.11
Port 988

Interceptor
10.0.0.12
Port 988

Client

Client
10.0.0.1
Port 988

distribute
requests,

filter responses

Client Connection without MDS Failure Client Connection in Case of MDS Failure

Figure 4.6.: Connection Failover

the connected MDS but is not distributed yet before the MDS fails. To avoid such errors

an acknowledgment scheme is needed.

71

5
Conclusions

5.1 Results

This Master thesis project aims to improve the availability of the Lustre �le system.

Major concern of this project is the metadata server (MDS) of the �le system.

The MDS of Lustre su�ers from the last single point of failure in the �le system. Lustre

already provides an active/standby high availability (HA) solution for the MDS. Down-

side of this solution is the shared disk between the two MDS to store the metadata. If

this disk fails, the state of the entire �le system is lost.

To overcome this single point of failure a new active/active HA approach is introduced.

In the active/active mode the MDS is replicated on several nodes, each using its own

disk to share the metadata.

To achieve a shared global state among the multiple MDS nodes an existing group

communication framework is used.

The new �le system design with multiple MDS nodes running in virtual synchrony

provides active/active high availability and leads to a signi�cant increase of availability.

Goal of the project is to develop a proof-of-concept implementation based on the expe-

rience attained in preceding two active/active HA projects1,2 at the Oak Ridge National

Laboratory.

1The JOSHUA Project [21]
2Symmetric Active/Active Metadata Service [18]

73

5. Conclusions

As a �nal result achieved of this Master thesis project, all general system design tasks

have been �nished. As shown in the previous sections an overall system design to solve

the key problems of the dissertation has been created.

For proper development and testing a working environment has been build and set up.

The development was done on a small dedicated cluster with one to three nodes serving

as MDS, one node serving as object storage target (OST), and one node serving as client

for the �le system. All nodes are homogeneous and identical in hardware and software

setup. The system tests have been done on 100MBit and 1GBit network.

Two prototype implementations have been developed with the aim, to show how the

proposed system design and its new realized form of symmetric active/active high avail-

ability can be accomplished in practice.

The Lustre networking has been analysed in order to include the HA system components

into the �le system.

The functionality tests of the prototypes prove working components like interceptors

or the group communication system. However, they also show missing functionality of

the prototypes. Components like dynamic group recon�guration or connection failover

couldn't be implemented. With lack of this functionality no working active/active HA

solution can be provided with this Master thesis. Reason for the missing components is

the Lustre design. It doesn't allow multiple running MDS at the same time. Further-

more, the MDS is so tightly included into the �le system, that there is no reasonable

workaround to this problem.

The performance tests show a signi�cant performance impact of the prototypes on the

�le system. This impact renders the proposed HA solution unreasonable in terms of

performance. After several tests, the problem causing this impact seems to be in the

Lustre implementation. However, this is mere speculation and cannot be proven.

The results of this dissertation show the di�culties of an implementation of an ac-

tive/active HA solution for MDS of Lustre. The insu�cient documentation and the

complicated and intransparent design of Lustre prohibit an adaptation to this solution.

An easy adaptation of the �le system to the active/active HA design like in the case of

74

5.2. Future Work

the parallel virtual �le system (PVFS) in one of the preceding projects3 is not possible

with Lustre.

Nevertheless, the results and �ndings of this Master thesis may be used for further

improvement of high availability for distributed �le systems.

5.2 Future Work

The results and �ndings of this Master thesis cannot provide a working solution to the

last single point of failure in Lustre.

The work provides a complete system design that needs to be adapted to Lustre. This

adaptation requires further investigation of the �le system.

In order to implement a fully working production type active/active HA solution, the

inner workings of the Lustre components must be understood and adjusted. The need

to run multiple MDS at the same time requires a change of the entire Lustre design.

To overcome the performance problems of the prototypes of this project, the source of

the signi�cant performance impact needs to be found.

Another problem is the group communication system Transis. Its inability to run in

a multithreaded environment limits the possibilities of the prototype design. Transis

needs to be replaced by a more sophisticated group communication system.

Due to the requirement of performing changes in the Lustre code anyway and the perfor-

mance issues of the project prototype implementations, the internal replication method

seems to be preferred for further work on active/active HA for Lustre.

3Symmetric Active/Active Metadata Service [18]

75

References

[1] Software Testing explained at Wikipedia. Available at http://en.wikipedia.org/

wiki/Software_test.

[2] The Parallel Virtual File System (PVFS) Project. Available at http://www.pvfs.

org/index.html.

[3] Transis group communication system project at Hebrew University of Jerusalem,

Israel. Available at http://www.cs.huji.ac.il/labs/transis.

[4] Universally Unique Identi�er (UUID) explained at Wikipedia. Available at http:

//en.wikipedia.org/wiki/Uuid.

[5] R. Alexander, C. Kerner, J. Kuehn, J. Layton, P. Luca, H. Ong, S. Oral, L. Stein,

J. Schroeder, S. Woods, and S. Studham. LustreTM: A How To Guide for Installing

and Con�guring Lustre Version 1.4.1, 2005. Available at www.ncsa.uiuc.edu/

News/datalink/0507/LustreHowTo.pdf.

[6] S. Bafna, S. Dalvi, A. Kampasi, and A. Kulkarni. CHIRAYU: A Highly Available

Metadata Server for Object Based Storage Cluster File System. In IEEE Bom-

bay Section, Apr. 2003. Available at www.cs.utexas.edu/~abhinay/research_

papers/chirayu.pdf.

[7] S. Bafna, S. Dalvi, A. Kampasi, and A. Kulkarni. Increasing current Lustre

availability to 99.9% with a backup Metadata Server. Jan. 2003. Available at

http://abhinaykampasi.tripod.com/TechDocs/HAMDSCharacteristics.pdf.

[8] Cluster File Systems, Inc. Lustre White Paper, 2004. Available at http://www.

lustre.org.

[9] Cluster File Systems, Inc. Lustre 1.4.7 Operations Manual, Version 1.4.7.1-man-

v35 (09/14/2006), 2006. Available at http://www.lustre.org.

[10] X. Defago, A. Schiper, and P. Urban. Total order broadcast and multicast algo-

rithms: Taxonomy and survey. ACM Computing Surveys, 36(4):372�421, 2004.

[11] C. Engelmann, S. L. Scott, C. Leangsuksun, and X. He. Symmetric Active/Active

High Availability for High-Performance Computing System Services. Journal of

Computers, 1(8):43�54, 2006.

77

http://en.wikipedia.org/wiki/Software_test
http://en.wikipedia.org/wiki/Software_test
http://www.pvfs.org/index.html
http://www.pvfs.org/index.html
http://en.wikipedia.org/wiki/Uuid
http://en.wikipedia.org/wiki/Uuid
www.ncsa.uiuc.edu/News/datalink/0507/LustreHowTo.pdf
www.ncsa.uiuc.edu/News/datalink/0507/LustreHowTo.pdf
www.cs.utexas.edu/~abhinay/research_papers/chirayu.pdf
www.cs.utexas.edu/~abhinay/research_papers/chirayu.pdf
http://abhinaykampasi.tripod.com/TechDocs/HAMDSCharacteristics.pdf
http://www.lustre.org
http://www.lustre.org
http://www.lustre.org

References

[12] C. Engelmann, S. L. Scott, C. Leangsuksun, and X. He. Towards High Avail-

ability for High-Performance Computing System Services: Accomplishments and

Limitations. In Proceedings of High Availability and Performance Workshop,

Santa Fe, NM, USA, Oct. 17, 2006. Available at www.csm.ornl.gov/~engelman/

publications/engelmann06towards.pdf.

[13] C. Engelmann, S. L. Scott, C. Leangsuksun, and X. He. On Programming Models

for Service-Level High Availability. In Proceedings of 2nd International Conference

on Availability, Reliability and Security, Vienna, Austria, Apr. 10-13, 2007.

[14] C. Engelmann, S. L. Scott, C. Leangsuksun, and X. He. Transparent Symmetric

Active/Active Replication for Service-Level High Availability. In Proceedings of 7th

IEEE International Symposium on Cluster Computing and the Grid, Rio de Janeiro,

Brazil, May 14-17, 2007. To appear.

[15] X. He, L. Ou, C. Engelmann, X. Chen, and S. L. Scott. Symmetric Active/Active

Metadata Service for High Availability Parallel File Systems. 2007. (under review).

[16] C. Leangsuksun, V. K. Munganuru, T. Liu, S. L. Scott, and C. Engelmann. Asym-

metric Active-Active High Availability for High-end Computing. In Proceedings of

2nd International Workshop on Operating Systems, Programming Environments and

Management Tools for High-Performance Computing on Clusters, Cambridge, MA,

USA, June 19, 2005.

[17] D. Malki. The Transis User Tutorial, 2004. Available at http://www.cs.huji.ac.

il/labs/transis.

[18] L. Ou, C. Engelmann, X. He, X. Chen, and S. L. Scott. Symmetric Active/Active

Metadata Service for Highly Available Cluster Storage Systems. 2007. (under

review).

[19] L. Ou, X. He, C. Engelmann, and S. L. Scott. A Fast Delivery Protocol for Total

Order Broadcasting. 2007. (under review).

[20] K. Uhlemann. High Availability for High-End Scienti�c Computing. Master's thesis,

Department of Computer Science, University of Reading, UK, Mar. 2006.

78

www.csm.ornl.gov/~engelman/publications/engelmann06towards.pdf
www.csm.ornl.gov/~engelman/publications/engelmann06towards.pdf
http://www.cs.huji.ac.il/labs/transis
http://www.cs.huji.ac.il/labs/transis

References

[21] K. Uhlemann, C. Engelmann, and S. L. Scott. JOSHUA: Symmetric Active/Active

Replication for Highly Available HPC Job and Resource Management. In Proceed-

ings of IEEE International Conference on Cluster Computing, Barcelona, Spain,

Sept. 25-28, 2006.

79

A
Appendix

A.1 Lustre HA Daemon Source Code

A.1.1 lustreHAdaemon.c

1 // −−
2 // Lustre High Ava i l a b i l i t y Daemon
3 //
4 // lustreHAdaemon . c −−source f i l e −−
5 //
6 // ve r s i on 0 .52 rev
7 //
8 // by Matthias Weber
9 // −−

10

11

12 #inc lude "transis.h"

13 #inc lude "lustreHAdaemon.h"

14 #inc lude "lustreMessageAdjust.h"

15

16

17 // Globals
18 __u8 f i l eCounterR = 0 ; /∗ counter f o r debug f i l e s Receive ∗/
19 i n t in t e r c epto rSocke t ID ; /∗ the id o f the i n t e r c e p t o r s e r v e r socke t ∗/
20 s t r u c t hostent ∗ ho s t i n f o ; /∗ hold host in fo rmat ion ∗/
21 connect ion_table_t ∗ connect ionTable ; /∗ t ab l e o f a v a i l a b l e connect i ons ∗/
22 i n t LusterAcceptorPort = LUSTRE_MAX_ACC_PORT; /∗ l o c a l s e cu re port f o r MDS ∗/
23 pthread_mutex_t mutexCT = PTHREAD_MUTEX_INITIALIZER; /∗ connect ion tab l e l ock ∗/
24

25

26 // −−
27 // Get in fo rmat ion about host running on
28 //
29 // r e tu rn s : 0 on suc c e s s / −1 i f e r r o r occurs
30 // −−
31 i n t GetHostInfo ()
32 {
33 char hostname [HOSTNAME_LENGTH] ;
34

35 /∗ get host in fo rmat ion ∗/
36 i f (gethostname (hostname , HOSTNAME_LENGTH) != 0) {
37 per ro r ("error getting hostname") ;
38 r e turn −1;

81

A. Appendix

39 }
40 i f ((h o s t i n f o = gethostbyname (hostname)) == NULL) {
41 her ro r ("error getting host by name") ;
42 r e turn −1;
43 }
44

45 p r i n t f ("Official host name: [%s]\n" , ho s t in f o−>h_name) ;
46 p r i n t f ("Official host addr: [%s]\n" , inet_ntoa (
47 ∗(s t r u c t in_addr ∗) hos t in f o−>h_addr_list [0])) ;
48

49 r e turn 0 ;
50 }
51

52

53 // −−
54 // s t a r t s the MDS/Cl i en t i n t e r c e p t o r s e r v e r
55 //
56 // r e tu rn s : 0 on suc c e s s / −1 i f e r r o r occurs
57 // −−
58 i n t S t a r t I n t e r c ep t o rS e r v e r ()
59 {
60 i n t rc ;
61 s t r u c t sockaddr_in socke tSe rve r ;
62

63 /∗ s e t t i n g s e r v e r up ∗/
64 i n t e r c epto rSocke t ID = socket (AF_INET, SOCK_STREAM, 0) ;
65 i f (i n t e r c epto rSocke t ID < 0) {
66 per ro r ("error opening interceptor socket") ;
67 r e turn −1;
68 }
69

70 s o cke tSe rve r . s in_fami ly = AF_INET;
71 s o cke tSe rve r . sin_addr . s_addr = inet_addr (INTERCEPTOR_ADDR) ;
72 s o cke tSe rve r . s in_port = htons (LUSTRE_SERVER_PORT) ;
73 bzero (socke tSe rve r . s in_zero , 8) ;
74

75 p r i n t f ("Binding Interceptor port: [%i] on addr: [%s]\n" , LUSTRE_SERVER_PORT,
76 INTERCEPTOR_ADDR) ;
77

78 rc = bind (inte rceptorSocket ID , (s t r u c t sockaddr ∗)& socketServer ,
79 s i z e o f (s o cke tSe rve r)) ;
80 i f (r c < 0){
81 per ro r ("error binding interceptor socket") ;
82 r e turn −1;
83 }
84

85 rc = l i s t e n (inte rceptorSocket ID , NUM_CONNECTIONS) ;
86 i f (r c < 0){
87 per ro r ("error listening to interceptor socket") ;
88 r e turn −1;
89 }
90

91 r e turn 0 ;
92 }
93

94

95 // −−
96 // Main Loop ;
97 //
98 // checks Sockets f o r messages and p ro c e s s e s them ,
99 // l ooks f o r incomming connect i ons as we l l

100 //
101 // r e tu rn s : 0 on suc c e s s / −1 i f e r r o r occurs

82

A.1. Lustre HA Daemon Source Code

102 // −−
103 i n t MessagePassOn ()
104 {
105 i n t rc ;
106 i n t i ;
107 i n t l s ;
108 fd_set r e ad f s ;
109 i n t maxfd ; /∗ maximum f i l e d e s c i p t o r used ∗/
110 i n t noe ; /∗ number o f connect ion e n t r i e s ∗/
111 i n t MDSSockets [NUM_CONNECTIONS] ; /∗ MDS socke t s ∗/
112 i n t CLIENTSockets [NUM_CONNECTIONS] ; /∗ CLIENT socke t s ∗/
113 i n t IDOfIndex [NUM_CONNECTIONS] ; /∗ IDs o f connect ion e n t r i e s ∗/
114 i n t MessageType [NUM_CONNECTIONS] ; /∗ message types o f connect ion e n t r i e s ∗/
115 i n t c lo sedConnect ions [NUM_CONNECTIONS] ; /∗ c l o s ed connect ion e n t r i e s ∗/
116 i n t numberOfClsConn ; /∗ number o f c l o s ed connect ion e n t r i e s ∗/
117

118

119 /∗ Lustre pass through ∗/
120 whi le (1){
121

122 numberOfClsConn = 0 ;
123

124 /∗ get connect ion tab l e l ock ∗/
125 rc = pthread_mutex_lock(&mutexCT) ; /∗ get l ock ∗/
126 i f (r c != 0) {
127 per ro r ("error getting connection table lock") ;
128 r e turn −1;
129 }
130

131 /∗ check f o r a c t i v e connect i ons ∗/
132 noe = GetNumberOfEnties () ;
133 FD_ZERO(&read f s) ;
134 FD_SET(inte rceptorSocket ID , &r ead f s) ; /∗ l ook f o r incomming connect i ons ∗/
135 maxfd = inte r c epto rSocke t ID ; /∗ s e t max fd ∗/
136

137 /∗ s e t the a c t i v e connect i ons ∗/
138 f o r (i =0; i<noe ; i++) {
139 /∗ s e t MDS ∗/
140 MDSSockets [i] = connect ionTable−>connect ion [i] . MDSSocket ;
141 i f (MDSSockets [i] != −1){
142 FD_SET(MDSSockets [i] , &r e ad f s) ;
143 i f (MDSSockets [i] > maxfd)
144 maxfd = MDSSockets [i] ;
145 }
146 /∗ s e t C l i en t ∗/
147 CLIENTSockets [i] = connect ionTable−>connect ion [i] . C l i entSocket ;
148 i f (CLIENTSockets [i] != −1){
149 FD_SET(CLIENTSockets [i] , &r e ad f s) ;
150 i f (CLIENTSockets [i] > maxfd)
151 maxfd = CLIENTSockets [i] ;
152 }
153

154 /∗ get connect ion id ∗/
155 IDOfIndex [i] = connect ionTable−>connect ion [i] . id ;
156

157 /∗ get message type ∗/
158 MessageType [i] = connect ionTable−>connect ion [i] . MessageType ;
159 }// f o r
160

161 /∗ r e l e a s e connect ion tab l e l ock ∗/
162 rc = pthread_mutex_unlock(&mutexCT) ; /∗ r e l e a s e l ock ∗/
163 i f (r c != 0) {
164 per ro r ("error releasing connection table lock") ;

83

A. Appendix

165 r e turn −1;
166 }
167

168 /∗ wait f o r data on socke t s ∗/
169 rc = s e l e c t (maxfd+1, &read f s , NULL, NULL, NULL) ;
170 i f (r c == −1) {
171 per ro r ("error select") ;
172 r e turn −1;
173 }
174

175 /∗ proce s s connect i ons ∗/
176 f o r (i =0; i<noe ; i++) {
177 i n t c l o s ed = 0 ;
178

179 /∗ check C l i en t ∗/
180 i f (CLIENTSockets [i] != −1){
181 i f (FD_ISSET(CLIENTSockets [i] , &r e ad f s)){
182

183 /∗ proce s s message ∗/
184 switch (MessageType [i]) {
185 case LUSTRE_ACCEPTOR_CONNREQ:
186 rc = ReceiveAcceptorRequest (IDOfIndex [i] , CLIENTSockets [i] , MDS) ;
187 i f (r c == −1)
188 r e turn −1;
189 i f (r c == −2){
190 c lo sedConnect ions [numberOfClsConn++] = IDOfIndex [i] ;
191 c l o s ed = 1 ;
192 }
193 break ;
194 case LUSTRE_LNET_HELLO:
195 rc = ReceiveLNETHello (IDOfIndex [i] , CLIENTSockets [i] , MDS) ;
196 i f (r c == −1)
197 r e turn −1;
198 i f (r c == −2){
199 c lo sedConnect ions [numberOfClsConn++] = IDOfIndex [i] ;
200 c l o s ed = 1 ;
201 }
202 break ;
203 case LUSTRE_MESSAGE:
204 rc = ReceiveLustreMessage (IDOfIndex [i] , CLIENTSockets [i] , MDS) ;
205 i f (r c == −1)
206 r e turn −1;
207 i f (r c == −2){
208 c lo sedConnect ions [numberOfClsConn++] = IDOfIndex [i] ;
209 c l o s ed = 1 ;
210 }
211 break ;
212 de f au l t :
213 f p r i n t f (s tde r r , "error , got wrong message type\n") ;
214 r e turn −1;
215 break ;
216 }// switch
217 }// i f
218 }// i f
219

220 /∗ check i f connect ion was c l o s ed ∗/
221 i f (c l o s ed == 1)
222 cont inue ;
223

224 /∗ check MDS ∗/
225 i f (MDSSockets [i] != −1){
226 i f (FD_ISSET(MDSSockets [i] , &r e ad f s)){
227

84

A.1. Lustre HA Daemon Source Code

228 /∗ proce s s message ∗/
229 switch (MessageType [i]) {
230 case LUSTRE_ACCEPTOR_CONNREQ:
231 rc = ReceiveAcceptorRequest (IDOfIndex [i] , MDSSockets [i] , CLIENT) ;
232 i f (r c == −1)
233 r e turn −1;
234 i f (r c == −2){
235 c lo sedConnect ions [numberOfClsConn++] = IDOfIndex [i] ;
236 c l o s ed = 1 ;
237 }
238 break ;
239 case LUSTRE_LNET_HELLO:
240 rc = ReceiveLNETHello (IDOfIndex [i] , MDSSockets [i] , CLIENT) ;
241 i f (r c == −1)
242 r e turn −1;
243 i f (r c == −2){
244 c lo sedConnect ions [numberOfClsConn++] = IDOfIndex [i] ;
245 c l o s ed = 1 ;
246 }
247 break ;
248 case LUSTRE_MESSAGE:
249 rc = ReceiveLustreMessage (IDOfIndex [i] , MDSSockets [i] , CLIENT) ;
250 i f (r c == −1)
251 r e turn −1;
252 i f (r c == −2){
253 c lo sedConnect ions [numberOfClsConn++] = IDOfIndex [i] ;
254 c l o s ed = 1 ;
255 }
256 break ;
257 de f au l t :
258 f p r i n t f (s tde r r , "error , got wrong message type\n") ;
259 r e turn −1;
260 break ;
261 }// switch
262 }// i f
263 }// i f
264 }// f o r
265

266 /∗ c l o s e connect i ons ∗/
267 f o r (i =0; i<numberOfClsConn ; i++){
268 /∗ get connect ion tab l e l ock ∗/
269 l s = pthread_mutex_lock(&mutexCT) ; /∗ get l ock ∗/
270 i f (l s != 0){
271 per ro r ("error getting connection table lock") ;
272 r e turn −1;
273 }
274 rc = CloseConnect ion (c lo sedConnect ions [i]) ;
275 /∗ r e l e a s e connect ion tab l e l ock ∗/
276 l s = pthread_mutex_unlock(&mutexCT) ; /∗ r e l e a s e l ock ∗/
277 i f (l s != 0){
278 per ro r ("error releasing connection table lock") ;
279 r e turn −1;
280 }
281 i f (r c == −1)
282 r e turn −1;
283 }
284

285 /∗ handle new Cl i en t connect ion ∗/
286 i f (FD_ISSET(inte rceptorSocket ID , &r ead f s)) {
287 rc = GetNewClient () ;
288 i f (r c == −1)
289 r e turn −1;
290 }

85

A. Appendix

291

292 }// whi l e
293

294 r e turn 0 ;
295 }
296

297

298 // −−
299 // rou t in e to c l o s e one connect ion between Cl i en t and MDS
300 //
301 // so cke t s are c l o s ed and the connect ion tab l e enty i s removed
302 //
303 // id − id o f t ab l e entry with the connect ion d e t a i l s
304 //
305 // r e tu rn s : 0 on suc c e s s / −1 i f e r r o r occurs
306 // −−
307 i n t CloseConnect ion (i n t id)
308 {
309 i n t rc ;
310 i n t socke t ;
311

312 /∗ c l o s e MDS socket ∗/
313 rc = GetSocketFromConnectionTable (id , MDS, &socket) ;
314 switch (rc) {
315 case 0 :
316 c l o s e (socke t) ;
317 break ;
318 case −1:
319 f p r i n t f (s tde r r , "error getting socket from MDS connection\n") ;
320 r e turn −1;
321 break ;
322 case −2:
323 break ;
324 }
325

326 /∗ c l o s e C l i en t socke t ∗/
327 rc = GetSocketFromConnectionTable (id , CLIENT, &socket) ;
328 switch (rc) {
329 case 0 :
330 c l o s e (socke t) ;
331 break ;
332 case −1:
333 f p r i n t f (s tde r r , "error getting socket from Client connection\n") ;
334 r e turn −1;
335 break ;
336 case −2:
337 break ;
338 }
339

340 /∗ Remove connect ion entry from tab l e ∗/
341 rc = RemoveEntryFromConnectionTable (id) ;
342 i f (r c == −1)
343 r e turn −1;
344

345 p r i n t f ("Connection with id: %i disconnected !\n" , id) ;
346 r e turn 0 ;
347 }
348

349

350 // −−
351 // s e t up incomming c l i e n t connect ion
352 //
353 // i f connect ion comes in , C l i en t i s accepted , connect ion tab l e i s

86

A.1. Lustre HA Daemon Source Code

354 // s e t up and reque s t to connect to MDS i s sent to Transis ,
355 // func t i on wait s f o r l o ck and re tu rn s a f t e r connect ion
356 // i s e s t ab l i s h ed
357 //
358 // r e tu rn s : 0 on suc c e s s / −1 i f e r r o r occurs
359 // −−
360 i n t GetNewClient ()
361 {
362 i n t rc ;
363 i n t l s ;
364 i n t id ;
365 i n t socke t ;
366 #i f n d e f TRANSIS_BYPASS
367 __u32 ∗header ;
368 #end i f
369 s t r u c t sockaddr_in so ck e tC l i en t ;
370 unsigned i n t l eng thC l i en t = s i z e o f (s o ck e tC l i en t) ;
371

372 p r i n t f ("Getting new client ...\n") ;
373

374 /∗ get C l i en t ∗/
375 socke t = accept (in te rceptorSocket ID , (s t r u c t sockaddr ∗)& socke tC l i en t ,
376 &leng thC l i en t) ;
377 i f (socke t < 0) {
378 i f (e r rno == EWOULDBLOCK) {
379 per ro r ("Error accept Interceptor Client") ;
380 r e turn −1;
381 }
382 per ro r ("Error accept Interceptor Client") ;
383 r e turn −1;
384 }
385

386 /∗ get connect ion tab l e l ock ∗/
387 l s = pthread_mutex_lock(&mutexCT) ; /∗ get l ock ∗/
388 i f (l s != 0) {
389 per ro r ("error getting connection table lock") ;
390 r e turn −1;
391 }
392

393 /∗ get new connect ion tab l e id ∗/
394 GetConnectionID(&id) ;
395

396 /∗ s e t up new connect ion tab l e entry ∗/
397 rc = AddEntryToConnectionTable (id , −1, socket ,
398 (char ∗) inet_ntoa (s o ck e tC l i en t . sin_addr)) ;
399 i f (r c == −1) {
400 f p r i n t f (s tde r r , "error setting up connection table entry\n") ;
401 r e turn −1;
402 }
403

404 p r i n t f ("--- got client with id: %i, connecting to MDS ... ---\n" , id) ;
405

406 /∗ Got c l i e n t , t e l l Trans i s to connect the In t e r c ep t o r nodes to t h e i r MDS ∗/
407 rc = EditMDSLock (id , SET) ; /∗ s e t MDS Lock ! ∗/
408 i f (r c == −1)
409 r e turn −1;
410

411 /∗ r e l e a s e connect ion tab l e l ock ∗/
412 l s = pthread_mutex_unlock(&mutexCT) ; /∗ r e l e a s e l ock ∗/
413 i f (l s != 0) {
414 per ro r ("error releasing connection table lock") ;
415 r e turn −1;
416 }

87

A. Appendix

417

418 #i f n d e f TRANSIS_BYPASS
419 /∗ s e t up header data f o r t r a n s i s message ∗/
420 header = (__u32 ∗) Buf ferToTrans i s ; /∗ po in t e r to beg inning o f message ∗/
421 ∗(header++) = CREATE_CONNECTION; /∗ type o f the message (s p e c i f i e d in t r a n s i s . h) ∗/
422 ∗(header++) = (4∗ s i z e o f (__u32)) ; /∗ s i z e o f the message ∗/
423 ∗(header++) = id ; /∗ i d e n t i f i e r o f entry in the connect ion tab l e ∗/
424 ∗(header++) = NO_TARGET; /∗ t a r g e t o f the message (No , C l i en t or MDS) ∗/
425 /∗ send message ∗/
426 rc = SendMessageToTransis (BufferToTransis , (4∗ s i z e o f (__u32))) ;
427 i f (r c == −1)
428 r e turn −1;
429 #e l s e
430 rc = ConnectToMDS(id) ;
431 i f (r c == −1)
432 r e turn −1;
433 #end i f
434

435 /∗ wait f o r MDS lock r e l e a s e ; i f r e l e a s ed , connect ion to MDS i s e s t ab l i s h ed ∗/
436 do {
437 /∗ get connect ion tab l e l ock ∗/
438 l s = pthread_mutex_lock(&mutexCT) ; /∗ get l ock ∗/
439 i f (l s != 0) {
440 per ro r ("error getting connection table lock") ;
441 r e turn −1;
442 }
443 /∗ get MDS lock s t a tu s ∗/
444 rc = GetMDSLock(id) ;
445 /∗ r e l e a s e connect ion tab l e l ock ∗/
446 l s = pthread_mutex_unlock(&mutexCT) ; /∗ r e l e a s e l ock ∗/
447 i f (l s != 0) {
448 per ro r ("error releasing connection table lock") ;
449 r e turn −1;
450 }
451 i f (r c == −1)
452 r e turn −1;
453

454 }whi l e (rc != UNSET) ;
455

456 r e turn 0 ;
457 }
458

459

460 // −−
461 // e s t a b l i s h connect ion to the MDS
462 //
463 // uses l o c a l s e cu re port (Acceptor Port) to connect to the MDS,
464 // a f t e r connect ion i s s e t up , the connect ion tab l e i s updated
465 // and the MDS lock i s r e l e a s e d
466 //
467 // id − connect ion i d e n t i f i e r
468 //
469 // r e tu rn s : 0 i f s u c c e s s / −1 i f e r r o r occurs
470 // −−
471 i n t ConnectToMDS (i n t id)
472 {
473 i n t rc ;
474 i n t opt ion ;
475 i n t mdsSocketID ;
476 s t r u c t sockaddr_in socke tSe rve r ;
477 s t r u c t sockaddr_in socketConnect ;
478

479 mdsSocketID = socket (PF_INET, SOCK_STREAM, 0) ;

88

A.1. Lustre HA Daemon Source Code

480 i f (mdsSocketID == −1) {
481 per ro r ("Error , can't create MDS Socket!") ;
482 r e turn −1;
483 }
484

485 /∗ s e t socke t opt ions ∗/
486 opt ion = 1 ;
487 rc = se t sockopt (mdsSocketID , SOL_SOCKET, SO_REUSEADDR,
488 (char ∗)&option , s i z e o f (opt ion)) ;
489 i f (r c != 0) {
490 per ro r ("Error , can't set socket options for MDS Socket!") ;
491 r e turn −1;
492 }
493

494 /∗ bind socke t to l o c a l s e cu re port ∗/
495 s o cke tSe rve r . s in_fami ly = AF_INET;
496 s o cke tSe rve r . s in_port = htons (LusterAcceptorPort −−);
497 s o cke tSe rve r . sin_addr . s_addr = inet_addr (INTERCEPTOR_ADDR) ;
498 /∗ bind socke t ∗/
499 rc = bind (mdsSocketID , (s t r u c t sockaddr ∗)& socketServer , s i z e o f (s o cke tSe rve r)) ;
500 i f (r c != 0) {
501 per ro r ("error binding local secure MDS port") ;
502 r e turn −1;
503 }
504

505 /∗ s e t up MDS data ∗/
506 socketConnect . s in_fami ly = AF_INET;
507 socketConnect . s in_port = htons (LUSTRE_SERVER_PORT) ;
508 socketConnect . sin_addr . s_addr = inet_addr (LUSTRE_MDS_ADDR) ;
509 /∗ connect socke t ∗/
510 rc = connect (mdsSocketID , (s t r u c t sockaddr ∗)&socketConnect , s i z e o f (socketConnect)) ;
511 i f (r c != 0) {
512 per ro r ("Error connecting to Lustre MDS") ;
513 r e turn −1;
514 }
515

516 /∗ get connect ion tab l e l ock ∗/
517 rc = pthread_mutex_lock(&mutexCT) ; /∗ get l ock ∗/
518 i f (r c != 0){
519 per ro r ("error getting connection table lock") ;
520 r e turn −1;
521 }
522

523 /∗ check i f entry in connect ion tab l e a l r eady ex i s t s , and make_new/ edit_old entry ∗/
524 rc = CheckConnectionID (id) ;
525 i f (r c == 0){
526 /∗ no entry in t ab l e ∗/
527 rc = AddEntryToConnectionTable (id , mdsSocketID , −1, NULL) ;
528 i f (r c == −1){
529 c l o s e (mdsSocketID) ;
530 /∗ r e l e a s e connect ion tab l e l ock ∗/
531 rc = pthread_mutex_unlock(&mutexCT) ; /∗ r e l e a s e l ock ∗/
532 i f (r c != 0){
533 per ro r ("error releasing connection table lock") ;
534 r e turn −1;
535 }
536 r e turn −1;
537 }
538 } e l s e {
539 /∗ found entry in t ab l e ∗/
540 rc = EditConnectionTableEntry (id , mdsSocketID , −1, NULL) ;
541 i f (r c == −1){
542 c l o s e (mdsSocketID) ;

89

A. Appendix

543 /∗ r e l e a s e connect ion tab l e l ock ∗/
544 rc = pthread_mutex_unlock(&mutexCT) ; /∗ r e l e a s e l ock ∗/
545 i f (r c != 0){
546 per ro r ("error releasing connection table lock") ;
547 r e turn −1;
548 }
549 r e turn −1;
550 }
551 }
552

553 /∗ r e l e a s e MDS Lock ! ∗/
554 rc = EditMDSLock (id , UNSET) ;
555 i f (r c == −1){
556 /∗ r e l e a s e connect ion tab l e l ock ∗/
557 rc = pthread_mutex_unlock(&mutexCT) ; /∗ r e l e a s e l ock ∗/
558 i f (r c != 0){
559 per ro r ("error releasing connection table lock") ;
560 r e turn −1;
561 }
562 r e turn −1;
563 }
564

565 /∗ r e l e a s e connect ion tab l e l ock ∗/
566 rc = pthread_mutex_unlock(&mutexCT) ; /∗ r e l e a s e l ock ∗/
567 i f (r c != 0){
568 per ro r ("error releasing connection table lock") ;
569 r e turn −1;
570 }
571

572 p r i n t f ("connection with id: %i connected to MDS\n" , id) ;
573 r e turn 0 ;
574 }
575

576

577 // −−
578 // r e c e i v e s LUSTRE ACCEPTOR_REQUEST and pas se s the message on to Trans i s
579 //
580 // id − connect ion i d e n t i f i e r
581 // socke t − the socke t i d e n t i f i e r
582 // ta r g e t − i n d i c a t e the t a r g e t o f the message (MDS, CLIENT)
583 //
584 // r e tu rn s : 0 i f s u c c e s s / −1 i f e r r o r occurs / −2 i f peer c l o s ed connect ion
585 // −−
586 i n t ReceiveAcceptorRequest (i n t id , i n t socket , i n t t a r g e t)
587 {
588 i n t rc ;
589 i n t l s ;
590 __u32 ∗header ;
591 __u32 messageLength = (4∗ s i z e o f (__u32)) + s i z e o f (lnet_acceptor_connreq_t) ;
592

593 /∗ s e t up header f o r t r a n s i s message ∗/
594 header = (__u32 ∗) Buf ferToTrans i s ; /∗ po in t e r to beg inning o f message ∗/
595 ∗(header++) = LUSTRE_ACCEPTOR_CONNREQ; /∗ type o f the message (s ee t r a n s i s . h) ∗/
596 ∗(header++) = messageLength ; /∗ s i z e o f the message ∗/
597 ∗(header++) = id ; /∗ i d e n t i f i e r o f entry in connect ion tab l e ∗/
598 ∗(header++) = ta rg e t ; /∗ t a r g e t o f message (No , C l i en t or MDS) ∗/
599

600 /∗ r e c e i v e acceptor r eque s t and put behind the header ∗/
601 rc = Rece iveBuf f e r (socket , header , s i z e o f (lnet_acceptor_connreq_t) , BLOCK) ;
602 switch (rc) {
603 case −1:
604 f p r i n t f (s tde r r , "Error receiving acceptor request .\n") ;
605 r e turn −1;

90

A.1. Lustre HA Daemon Source Code

606 break ;
607 case −2:
608 f p r i n t f (s tde r r ,
609 "ReceiveAcceptorRequest - peer closed connection; id: %i; socket: %i\n" ,
610 id , socke t) ;
611 r e turn −2;
612 break ;
613 de f au l t :
614 i f (r c != s i z e o f (lnet_acceptor_connreq_t)) {
615 f p r i n t f (s tde r r , "Didn't receive complete acceptor request structure .\n") ;
616 r e turn −1;
617 }
618 break ;
619 }
620

621 #i f d e f DEBUG
622 {
623 i n t f i leTemp ;
624 char f i leName [3 0] ;
625 char f i leNumber [2 0] ;
626

627 s t r cpy (fi leName , "recv") ;
628 s p r i n t f (f i leNumber , "%d" , f i l eCounterR++);
629 s t r c a t (f i leName , f i leNumber) ;
630

631 f i leTemp=open (fi leName , O_CREAT | O_TRUNC | O_RDWR, 0666) ;
632 i f (f i leTemp < 0){
633 per ro r ("error creating file") ;
634 r e turn −1;
635 }
636

637 rc = wr i t e (fi leTemp , header , s i z e o f (lnet_acceptor_connreq_t)) ;
638 i f (r c == −1){
639 per ro r ("error writing to debug file") ;
640 r e turn −1;
641 }
642

643 rc = c l o s e (f i leTemp) ;
644 i f (r c == −1){
645 per ro r ("error closing debug file") ;
646 r e turn −1;
647 }
648 }
649 #end i f
650

651 #i f n d e f TRANSIS_BYPASS
652 /∗ send message to Trans i s ∗/
653 rc = SendMessageToTransis (BufferToTransis , messageLength) ;
654 i f (r c == −1) {
655 f p r i n t f (s tde r r , "error sending acceptor request\n") ;
656 r e turn −1;
657 }
658 #end i f
659

660 /∗ get connect ion tab l e l ock ∗/
661 l s = pthread_mutex_lock(&mutexCT) ; /∗ get l ock ∗/
662 i f (l s != 0){
663 per ro r ("error getting connection table lock") ;
664 r e turn −1;
665 }
666

667 /∗ s e t message type to the next in Lustre p ro to co l ∗/
668 rc = SetMessageType (id , LUSTRE_LNET_HELLO) ;

91

A. Appendix

669 /∗ r e l e a s e connect ion tab l e l ock ∗/
670 l s = pthread_mutex_unlock(&mutexCT) ; /∗ r e l e a s e l ock ∗/
671 i f (l s != 0){
672 per ro r ("error releasing connection table lock") ;
673 r e turn −1;
674 }
675 i f (r c == −1)
676 r e turn −1;
677

678 #i f d e f TRANSIS_BYPASS
679 /∗ Check message and pass on to Lustre ∗/
680 rc = CheckAndSendAcceptorRequest () ;
681 i f (r c == −1)
682 r e turn −1;
683 #end i f
684

685 r e turn 0 ;
686 }
687

688

689 // −−
690 // r e c e i v e s LUSTRE LNET_HELLO and pas se s the message on to Trans i s
691 //
692 // id − connect ion i d e n t i f i e r
693 // socke t − the socke t i d e n t i f i e r
694 // ta r g e t − i n d i c a t e the t a r g e t o f the message (MDS, CLIENT)
695 //
696 // r e tu rn s : 0 i f s u c c e s s / −1 i f e r r o r occurs / −2 i f peer c l o s ed connect ion
697 // −−
698 i n t ReceiveLNETHello (i n t id , i n t socket , i n t t a r g e t)
699 {
700 i n t rc ;
701 i n t l s ;
702 lnet_hdr_t ∗hdr ; /∗ po in t e r to Lustre LNET header ∗/
703 __u32 ∗header ;
704 __u32 messageLength = (4∗ s i z e o f (__u32)) + s i z e o f (lnet_hdr_t) ;
705

706 /∗ s e t up header f o r t r a n s i s message ∗/
707 header = (__u32 ∗) Buf ferToTrans i s ; /∗ po in t e r to beg inning o f message ∗/
708 ∗(header++) = LUSTRE_LNET_HELLO; /∗ type o f the message (s ee t r a n s i s . h) ∗/
709 ∗(header++) = messageLength ; /∗ s i z e o f the message ∗/
710 ∗(header++) = id ; /∗ i d e n t i f i e r o f entry in connect ion tab l e ∗/
711 ∗(header++) = ta rg e t ; /∗ t a r g e t o f message (No , C l i en t or MDS) ∗/
712

713 /∗ r e c e i v e LNET he l l o and put behind the header ∗/
714 rc = Rece iveBuf f e r (socket , header , s i z e o f (lnet_hdr_t) , BLOCK) ;
715 switch (rc) {
716 case −1:
717 f p r i n t f (s tde r r , "Error receiving LNET hello.\n") ;
718 r e turn −1;
719 break ;
720 case −2:
721 f p r i n t f (s tde r r ,
722 "ReceiveLNETHello - peer closed connection; id: %i; socket: %i\n" ,
723 id , socke t) ;
724 r e turn −2;
725 break ;
726 de f au l t :
727 i f (r c != s i z e o f (lnet_hdr_t)) {
728 f p r i n t f (s tde r r , "Didn't receive complete LNET hello header .\n") ;
729 r e turn −1;
730 }
731 break ;

92

A.1. Lustre HA Daemon Source Code

732 }
733

734 /∗ check f o r payload ∗/
735 hdr = (lnet_hdr_t ∗) header ;
736 i f (hdr−>payload_length != 0){
737 f p r i n t f (s tde r r , "got payload in LNET Hello header !!!\n") ;
738 r e turn −1;
739 }
740

741 #i f d e f DEBUG
742 {
743 i n t f i leTemp ;
744 char f i leName [3 0] ;
745 char f i leNumber [2 0] ;
746

747 s t r cpy (fi leName , "recv") ;
748 s p r i n t f (f i leNumber , "%d" , f i l eCounterR++);
749 s t r c a t (f i leName , f i leNumber) ;
750

751 f i leTemp=open (fi leName , O_CREAT | O_TRUNC | O_RDWR, 0666) ;
752 i f (f i leTemp < 0){
753 per ro r ("error creating file") ;
754 r e turn −1;
755 }
756

757 rc = wr i t e (fi leTemp , header , s i z e o f (lnet_hdr_t)) ;
758 i f (r c == −1){
759 per ro r ("error writing to debug file") ;
760 r e turn −1;
761 }
762

763 rc = c l o s e (f i leTemp) ;
764 i f (r c == −1){
765 per ro r ("error closing debug file") ;
766 r e turn −1;
767 }
768 }
769 #end i f
770

771 #i f n d e f TRANSIS_BYPASS
772 /∗ send message to Trans i s ∗/
773 rc = SendMessageToTransis (BufferToTransis , messageLength) ;
774 i f (r c == −1) {
775 f p r i n t f (s tde r r , "error sending LNET hello header\n") ;
776 r e turn −1;
777 }
778 #end i f
779

780 /∗ s e t message type to the next in Lustre p ro to co l ∗/
781 i f (t a r g e t == CLIENT){
782 /∗ get connect ion tab l e l ock ∗/
783 l s = pthread_mutex_lock(&mutexCT) ; /∗ get l ock ∗/
784 i f (l s != 0){
785 per ro r ("error getting connection table lock") ;
786 r e turn −1;
787 }
788 /∗ s e t message type ∗/
789 rc = SetMessageType (id , LUSTRE_MESSAGE) ;
790 /∗ r e l e a s e connect ion tab l e l ock ∗/
791 l s = pthread_mutex_unlock(&mutexCT) ; /∗ r e l e a s e l ock ∗/
792 i f (l s != 0){
793 per ro r ("error releasing connection table lock") ;
794 r e turn −1;

93

A. Appendix

795 }
796 i f (r c == −1)
797 r e turn −1;
798 }
799

800 #i f d e f TRANSIS_BYPASS
801 /∗ Check message and pass on to Lustre ∗/
802 rc = CheckAndSendLNETHello () ;
803 i f (r c == −1)
804 r e turn −1;
805 #end i f
806

807 r e turn 0 ;
808 }
809

810

811 // −−
812 // r e c e i v e s LUSTRE message and pas s e s the message on to Trans i s
813 //
814 // id − connect ion i d e n t i f i e r
815 // socke t − the socke t i d e n t i f i e r
816 // ta r g e t − i n d i c a t e the t a r g e t o f the message (MDS, CLIENT)
817 //
818 // r e tu rn s : 0 i f s u c c e s s / −1 i f e r r o r occurs / −2 i f peer c l o s ed connect ion
819 // −−
820 i n t ReceiveLustreMessage (i n t id , i n t socket , i n t t a r g e t)
821 {
822 i n t rc ;
823 lnet_hdr_t ∗hdr ; /∗ po in t e r to Lustre message header ∗/
824 __u32 ∗header ;
825 __u32 ∗messageLength ;
826

827 /∗ s e t up header f o r t r a n s i s message ∗/
828 header = (__u32 ∗) Buf ferToTrans i s ; /∗ po in t e r to beg inning o f message ∗/
829 ∗(header++) = LUSTRE_MESSAGE; /∗ type o f the message (s ee t r a n s i s . h) ∗/
830 messageLength = header++; /∗ po in t e r to s i z e o f message in header ∗/
831 ∗(header++) = id ; /∗ id o f entry in connect ion tab l e ∗/
832 ∗(header++) = ta rg e t ; /∗ t a r g e t o f message (No , C l i en t or MDS) ∗/
833

834 /∗ get the Lustre message header and put behind t r a n s i s message header ∗/
835 rc = Rece iveBuf f e r (socket , header , s i z e o f (lnet_hdr_t) , BLOCK) ;
836 switch (rc) {
837 case −1:
838 f p r i n t f (s tde r r , "Error receiving Message .\n") ;
839 r e turn −1;
840 break ;
841 case −2:
842 f p r i n t f (s tde r r , "ReceiveLustreMessage , header - peer closed connection ;\

843 id: %i; socket: %i\n" , id , socke t) ;
844 r e turn −2;
845 break ;
846 de f au l t :
847 i f (r c != s i z e o f (lnet_hdr_t)) {
848 f p r i n t f (s tde r r , "Didn't receive complete message header .\n") ;
849 r e turn −1;
850 }
851 break ;
852 }
853

854 /∗ check f o r Payload length ∗/
855 hdr = (lnet_hdr_t ∗) header ;
856 i f ((hdr−>payload_length + s i z e o f (lnet_hdr_t)) > MESSAGE_BUFFER_SIZE) {
857 f p r i n t f (s tde r r , "Bad payload length %ld\n" , le32_to_cpu (hdr−>payload_length)) ;

94

A.1. Lustre HA Daemon Source Code

858 r e turn −1;
859 }
860

861 /∗ get payload i f needed ∗/
862 i f (hdr−>payload_length > 0) {
863 /∗ r e c e i v e payload and put behind Lustre message header ∗/
864 rc = Rece iveBuf f e r (socket , (__u8 ∗) (header + (s i z e o f (lnet_hdr_t)/ s i z e o f (__u32))) ,
865 hdr−>payload_length , BLOCK) ;
866 switch (rc) {
867 case −1:
868 f p r i n t f (s tde r r , "Error receiving Message .\n") ;
869 r e turn −1;
870 break ;
871 case −2:
872 f p r i n t f (s tde r r , "ReceiveLustreMessage , payload - peer closed connection ;\

873 id: %i; socket: %i\n" , id , socke t) ;
874 r e turn −2;
875 break ;
876 de f au l t :
877 i f (r c != hdr−>payload_length) {
878 f p r i n t f (s tde r r , "Didn't receive complete message payload .\n") ;
879 r e turn −1;
880 }
881 break ;
882 }
883 }
884

885 #i f d e f DEBUG
886 {
887 i n t f i leTemp ;
888 char f i leName [3 0] ;
889 char f i leNumber [2 0] ;
890

891 s t r cpy (fi leName , "recv") ;
892 s p r i n t f (f i leNumber , "%d" , f i l eCounterR++);
893 s t r c a t (f i leName , f i leNumber) ;
894

895 f i leTemp=open (fi leName , O_CREAT | O_TRUNC | O_RDWR, 0666) ;
896 i f (f i leTemp < 0){
897 per ro r ("error creating file") ;
898 r e turn −1;
899 }
900

901 rc = wr i t e (fi leTemp , header , s i z e o f (lnet_hdr_t) + hdr−>payload_length) ;
902 i f (r c == −1){
903 per ro r ("error writing to debug file") ;
904 r e turn −1;
905 }
906

907 rc = c l o s e (f i leTemp) ;
908 i f (r c == −1){
909 per ro r ("error closing debug file") ;
910 r e turn −1;
911 }
912 }
913 #end i f
914

915 /∗ s e t message l ength in t r a n s i s message header ∗/
916 ∗messageLength = (4∗ s i z e o f (__u32)) + s i z e o f (lnet_hdr_t) + hdr−>payload_length ;
917

918 #i f n d e f TRANSIS_BYPASS
919 /∗ send message to Trans i s ∗/
920 rc = SendMessageToTransis (BufferToTransis , ∗messageLength) ;

95

A. Appendix

921 i f (r c == −1) {
922 f p r i n t f (s tde r r , "error sending Lustre Message\n") ;
923 r e turn −1;
924 }
925 #e l s e
926 /∗ Check message and pass on to Lustre ∗/
927 rc = CheckAndSendMessage () ;
928 i f (r c == −1)
929 r e turn −1;
930 #end i f
931

932 r e turn 0 ;
933 }
934

935

936 // −−
937 // Reads a bu f f e r from a f i l e d e s c r i p t o r (non−/b lock ing) .
938 //
939 // fd − The f i l e d e s c r i p t o r to read from .
940 // bu f f e r − The bu f f e r to read in to .
941 // l ength − The maximum bu f f e r l ength to read .
942 // block − The (non−)b lock ing f l a g (0 = non−block ing , 1 = block ing) .
943 //
944 // r e tu rn s : number o f bytes read on succes s , −2 on c l o s ed f i l e d e s c r i p t o r
945 // or −1 on any other e r r o r with errno s e t app rop r i a t e l y .
946 // −−
947 i n t Rece iveBuf f e r (i n t fd , void ∗ bu f f e r , unsigned i n t length , unsigned i n t b lock)
948 {
949 i n t bytes ;
950 unsigned i n t index ;
951

952 f o r (index = 0 ; index < length ;) {
953 /∗ Read some data . ∗/
954 switch (bytes = read (fd , bu f f e r + index , l ength − index)) {
955 case −1: {
956 switch (errno) {
957 case EINTR: {
958 break ;
959 }
960 case EAGAIN: {
961 i f (0 == block) {
962 r e turn index ;
963 }
964 break ;
965 }
966 de f au l t : {
967 per ro r ("unable to read from file descriptor") ;
968 r e turn −1;
969 }
970 }
971 break ;
972 }
973 case 0 : {
974 errno = EPIPE ;
975 i f (0 != index) {
976 per ro r ("unable to read from closed file descriptor") ;
977 }
978 r e turn −2;
979 }
980 de f au l t : {
981 index += bytes ;
982 i f (0 == block) {
983 r e turn index ;

96

A.1. Lustre HA Daemon Source Code

984 }
985 }
986 }
987 }
988 r e turn index ;
989 }
990

991

992 // −−
993 // Writes a bu f f e r i n to a f i l e d e s c r i p t o r (b lock ing) .
994 //
995 // fd − The f i l e d e s c r i p t o r to wr i t e to .
996 // bu f f e r − The bu f f e r to wr i t e from .
997 // l ength − The bu f f e r l ength to wr i t e .
998 //
999 // r e tu rn s : 0 on succes s , −2 on c l o s ed f i l e d e s c r i p t o r or −1 on any

1000 // other e r r o r with errno s e t app rop r i a t e l y .
1001 // −−
1002 i n t SendBuffer (i n t fd , const void ∗ bu f f e r , unsigned i n t l ength)
1003 {
1004 i n t bytes ;
1005 unsigned i n t index ;
1006

1007 f o r (index = 0 ; index < length ;) {
1008 /∗ Write some data . ∗/
1009 switch (bytes = wr i t e (fd , bu f f e r + index , l ength − index)) {
1010 case −1: {
1011 switch (errno) {
1012 case EINTR:
1013 case EAGAIN: {
1014 break ;
1015 }
1016 case EPIPE : {
1017 i f (0 != index) {
1018 per ro r ("unable to write to closed file descriptor") ;
1019 }
1020 r e turn −2;
1021 }
1022 de f au l t : {
1023 per ro r ("unable to write to file descriptor") ;
1024 r e turn −1;
1025 }
1026 }
1027 break ;
1028 }
1029 de f au l t : {
1030 index += bytes ;
1031 }
1032 }
1033 }
1034 r e turn 0 ;
1035 }
1036

1037

1038 // −−
1039 // Add entry to connect ion tab l e
1040 //
1041 // id − i d e n t i f i e r o f the connect ion
1042 // MDSSocket − number o f socke t to MDS, −1 i f not connected
1043 // Cl i entSocket − number o f socke t to Cl ient , −1 i f not connected
1044 // ipAddress − the IP Address o f the Cl ient , NULL i f no enty
1045 //
1046 // r e tu rn s : 0 on suc c e s s / −1 i f e r r o r occurs

97

A. Appendix

1047 // −−
1048 i n t AddEntryToConnectionTable (i n t id , i n t MDSSocket , i n t Cl i entSocket , char ∗ ipAddress)
1049 {
1050 i n t index ;
1051 void ∗ connect ion = NULL;
1052

1053 /∗ I n c r e a s e r e g i s t r y s i z e . ∗/
1054 index = connect ionTable−>count ;
1055 connect ionTable−>count++;
1056

1057 /∗ Rea l l o ca t e r e g i s t r y . ∗/
1058 i f (NULL == (connect ion = r e a l l o c (connect ionTable−>connect ion ,
1059 (connect ionTable−>count ∗ s i z e o f (connect ionTable−>connect ion [0]))))) {
1060 per ro r ("realloc") ;
1061 r e turn −1;
1062 }
1063 connect ionTable−>connect ion = connect ion ;
1064

1065 /∗ Set connect ion e n t r i e s . ∗/
1066 connect ionTable−>connect ion [index] . id = id ;
1067 connect ionTable−>connect ion [index] . MDSLock = UNSET;
1068 connect ionTable−>connect ion [index] . MDSSocket = MDSSocket ;
1069 connect ionTable−>connect ion [index] . C l i entSocket = Cl i entSocket ;
1070 connect ionTable−>connect ion [index] . MessageType = LUSTRE_ACCEPTOR_CONNREQ;
1071 i f (ipAddress != NULL)
1072 s t r cpy (connect ionTable−>connect ion [index] . IPAddress , ipAddress) ;
1073 e l s e
1074 s t r cpy (connect ionTable−>connect ion [index] . IPAddress , "0.0.0.0") ;
1075

1076 r e turn 0 ;
1077 }
1078

1079

1080 // −−
1081 // Edit entry in the connect ion tab l e
1082 //
1083 // id : − the entry with the g iven id w i l l be ed i t ed
1084 // MDSSocket − number o f socke t to MDS, −1 i f not to be s e t
1085 // Cl i entSocket − number o f socke t to Cl ient , −1 i f not to be s e t
1086 // ipAddress − the IP Address o f the Cl ient , NULL i f not to be s e t
1087 //
1088 // r e tu rn s : 0 on suc c e s s / −1 i f e r r o r occurs
1089 // −−
1090 i n t EditConnectionTableEntry (i n t id , i n t MDSSocket , i n t Cl i entSocket , char ∗ ipAddress)
1091 {
1092 i n t i ;
1093 i n t index = −1;
1094

1095 /∗ get index o f id ∗/
1096 f o r (i =0; i<connect ionTable−>count ; i++) {
1097 i f (connect ionTable−>connect ion [i] . id == id){
1098 index = i ;
1099 break ;
1100 }
1101 }
1102

1103 /∗ id not found ∗/
1104 i f (index == −1){
1105 f p r i n t f (s tde r r , "Error editing connection table entry: id not found!\n") ;
1106 r e turn −1;
1107 }
1108

1109 /∗ Edit connect ion e n t r i e s . ∗/

98

A.1. Lustre HA Daemon Source Code

1110 connect ionTable−>connect ion [index] . MessageType = LUSTRE_ACCEPTOR_CONNREQ;
1111 i f (MDSSocket != −1)
1112 connect ionTable−>connect ion [index] . MDSSocket = MDSSocket ;
1113 i f (C l i entSocket != −1)
1114 connect ionTable−>connect ion [index] . C l i entSocket = Cl i entSocket ;
1115 i f (ipAddress != NULL)
1116 s t r cpy (connect ionTable−>connect ion [index] . IPAddress , ipAddress) ;
1117

1118 r e turn 0 ;
1119 }
1120

1121

1122 // −−
1123 // Remove entry from connect ion tab l e
1124 //
1125 // id − the entry with the g iven id w i l l be removed
1126 //
1127 // r e tu rn s : 0 on suc c e s s / −1 i f e r r o r occurs
1128 // −−
1129 i n t RemoveEntryFromConnectionTable (i n t id)
1130 {
1131 i n t i ;
1132 i n t index = −1;
1133 void ∗ connect ion = NULL;
1134

1135 /∗ get index o f id ∗/
1136 f o r (i =0; i<connect ionTable−>count ; i++) {
1137 i f (connect ionTable−>connect ion [i] . id == id){
1138 index = i ;
1139 break ;
1140 }
1141 }
1142

1143 /∗ id not found ∗/
1144 i f (index == −1){
1145 f p r i n t f (s tde r r , "Error removing connection from table: id not found!\n") ;
1146 r e turn −1;
1147 }
1148

1149 /∗ Remove entry from r e g i s t r y . ∗/
1150 connect ionTable−>count−−;
1151

1152 memmove(connect ionTable−>connect ion + index , connect ionTable−>connect ion + index + 1 ,
1153 (connect ionTable−>count − index) ∗ s i z e o f (connect ionTable−>connect ion [0])) ;
1154

1155 /∗ Rea l l o ca t e r e g i s t r y . ∗/
1156 i f (0 == connect ionTable−>count) {
1157 f r e e (connect ionTable−>connect ion) ;
1158 connect ionTable−>connect ion = NULL;
1159 } e l s e i f (NULL == (connect ion = r e a l l o c (connect ionTable−>connect ion ,
1160 connect ionTable−>count ∗ s i z e o f (connect ionTable−>connect ion [0])))) {
1161 per ro r ("realloc") ;
1162 r e turn −1;
1163 } e l s e {
1164 connect ionTable−>connect ion = connect ion ;
1165 }
1166

1167 r e turn 0 ;
1168 }
1169

1170

1171 // −−
1172 // Function r e tu rn s an unused connect ion id

99

A. Appendix

1173 //
1174 // ∗ id − po in t e r to the returned id
1175 //
1176 // −−
1177 void GetConnectionID (i n t ∗ id)
1178 {
1179 i n t rc ;
1180 i n t rn ;
1181

1182 do {
1183 /∗ generate random number ∗/
1184 rn = random () ;
1185

1186 /∗ check i f random number i s a l r eady used , i f not use i t as id ∗/
1187 rc = CheckConnectionID (rn) ;
1188 i f (0 == rc) {
1189 ∗ id = rn ;
1190 r e turn ;
1191 }
1192 } whi l e (1) ;
1193 }
1194

1195

1196 // −−
1197 // Checks i f connect ion ID i s a l r eady used
1198 //
1199 // id − the connect ion id to check
1200 //
1201 // r e tu rn s : 0 i f id i s not used / −1 i f id i s a l r eady used
1202 // −−
1203 i n t CheckConnectionID (i n t id)
1204 {
1205 i n t i ;
1206

1207 /∗ check i f id i s a l r eady used ∗/
1208 f o r (i =0; i<connect ionTable−>count ; i++) {
1209 i f (connect ionTable−>connect ion [i] . id == id){
1210 r e turn −1;
1211 }
1212 }
1213

1214 r e turn 0 ;
1215 }
1216

1217

1218 // −−
1219 // Returns the number o f e n t r i e s in the connect ion tab l e
1220 //
1221 //
1222 // r e tu rn s : >=0 the number o f e n t r i e s
1223 // −−
1224 i n t GetNumberOfEnties ()
1225 {
1226 r e turn connect ionTable−>count ;
1227 }
1228

1229

1230 // −−
1231 // ge t s the socke t id from the connect ion tab l e
1232 //
1233 // id − connect ion i d e n t i f i e r
1234 // choose − i n d i c a t e the socke t to get back (MDS, CLIENT)
1235 // ∗ socke t − po in t e r to hold the socke t i d e n t i f i e r

100

A.1. Lustre HA Daemon Source Code

1236 //
1237 // r e tu rn s : 0 i f s u c c e s s / −1 i f e r r o r occurs / −2 i f not connected
1238 // −−
1239 i n t GetSocketFromConnectionTable (i n t id , i n t choose , i n t ∗ socke t)
1240 {
1241 i n t i ;
1242

1243 /∗ l ook f o r connect ion ∗/
1244 f o r (i =0; i<connect ionTable−>count ; i++) {
1245 i f (connect ionTable−>connect ion [i] . id == id) {
1246 i f (choose == MDS) /∗ need MDS Socket ∗/
1247 ∗ socke t = connect ionTable−>connect ion [i] . MDSSocket ;
1248 e l s e /∗ need Cl i en t Socket ∗/
1249 ∗ socke t = connect ionTable−>connect ion [i] . C l i entSocket ;
1250 /∗ check f o r connect ion ∗/
1251 i f (∗ socke t == −1)
1252 r e turn −2; /∗ not connected ∗/
1253 e l s e
1254 r e turn 0 ; /∗ r e turn socke t id ∗/
1255 }// i f
1256 }// f o r
1257

1258 r e turn −1;
1259 }
1260

1261

1262 // −−
1263 // Returns the MDS Lock s t a tu s f o r the g iven tab l e enty
1264 //
1265 // id − connect ion i d e n t i f i e r
1266 //
1267 // r e tu rn s : −1 i f e r r o r occurs / 0 (UNSET) i f Lock i s not s e t /
1268 // 1 (SET) i f Lock i s s e t
1269 // −−
1270 i n t GetMDSLock (i n t id)
1271 {
1272 i n t i ;
1273

1274 /∗ l ook f o r connect ion enty ∗/
1275 f o r (i =0; i<connect ionTable−>count ; i++) {
1276 i f (connect ionTable−>connect ion [i] . id == id) {
1277 /∗ check s t a tu s ∗/
1278 switch (connect ionTable−>connect ion [i] . MDSLock) {
1279 case SET:
1280 r e turn SET;
1281 break ;
1282 case UNSET:
1283 r e turn UNSET;
1284 de f au l t :
1285 break ;
1286 }// switch
1287 }// i f
1288 }// f o r
1289

1290 f p r i n t f (s tde r r ,
1291 "error finding , or false MDS Lock entry for connection with id: %i\n" , id) ;
1292 r e turn −1;
1293 }
1294

1295

1296 // −−
1297 // Set /Unset the MDS Lock from the given entry in the connect ion tab l e
1298 //

101

A. Appendix

1299 // id − connect ion i d e n t i f i e r
1300 // l ockSta tus − the s t a tu s to s e t the MDSLock to
1301 //
1302 // r e tu rn s : 0 i f s u c c e s s / −1 i f e r r o r occurs
1303 // −−
1304 i n t EditMDSLock (i n t id , i n t l o ckSta tus)
1305 {
1306 i n t i ;
1307

1308 /∗ l ook f o r connect ion entry ∗/
1309 f o r (i =0; i<connect ionTable−>count ; i++) {
1310 i f (connect ionTable−>connect ion [i] . id == id) {
1311 /∗ s e t / unset the Lock ∗/
1312 connect ionTable−>connect ion [i] . MDSLock = lockSta tu s ;
1313 r e turn 0 ;
1314 }// i f
1315 }// f o r
1316

1317 f p r i n t f (s tde r r , "cannot set/unset MDS Lock for connection with id: %i\n" , id) ;
1318 r e turn −1;
1319 }
1320

1321

1322 // −−
1323 // ge t s the message type o f an connect ion tab l e enty
1324 //
1325 // id − connect ion i d e n t i f i e r
1326 // ∗messageType − po in t e r to hold the message type
1327 //
1328 // r e tu rn s : 0 i f s u c c e s s / −1 i f e r r o r occurs
1329 // −−
1330 i n t GetMessageType (i n t id , i n t ∗messageType)
1331 {
1332 i n t i ;
1333

1334 /∗ l ook f o r connect ion ∗/
1335 f o r (i =0; i<connect ionTable−>count ; i++) {
1336 i f (connect ionTable−>connect ion [i] . id == id) {
1337 ∗messageType = connect ionTable−>connect ion [i] . MessageType ;
1338 r e turn 0 ;
1339 }// i f
1340 }// f o r
1341

1342 f p r i n t f (s tde r r , "could not get message type\n") ;
1343 r e turn −1;
1344 }
1345

1346

1347 // −−
1348 // Sets the message type o f an connect ion tab l e enty
1349 //
1350 // id − connect ion i d e n t i f i e r
1351 // messageType − the message type to s e t enty to
1352 //
1353 // r e tu rn s : 0 i f s u c c e s s / −1 i f e r r o r occurs
1354 // −−
1355 i n t SetMessageType (i n t id , i n t messageType)
1356 {
1357 i n t i ;
1358

1359 /∗ l ook f o r connect ion ∗/
1360 f o r (i =0; i<connect ionTable−>count ; i++) {
1361 i f (connect ionTable−>connect ion [i] . id == id) {

102

A.1. Lustre HA Daemon Source Code

1362 connect ionTable−>connect ion [i] . MessageType = messageType ;
1363 r e turn 0 ;
1364 }// i f
1365 }// f o r
1366

1367 f p r i n t f (s tde r r , "could not set message type\n") ;
1368 r e turn −1;
1369 }
1370

1371

1372 // −−
1373 // Appl i ca t ion main entry po int
1374 //
1375 //
1376 // programm ex i t s or breaks up only here
1377 // −−
1378 i n t main (i n t argc , char ∗argv [])
1379 {
1380 i n t rc ;
1381 connect ion_table_t connTab ; /∗ the connect ion tab l e ∗/
1382

1383 /∗ s e t up the connect ion tab l e ∗/
1384 connect ionTable = (connect ion_table_t ∗)&connTab ;
1385 connect ionTable−>connect ion = NULL;
1386 connect ionTable−>count = 0 ;
1387

1388 /∗ r e l e a s e connect ion tab l e l ock ∗/
1389 rc = pthread_mutex_unlock(&mutexCT) ; /∗ r e l e a s e l ock ∗/
1390 i f (r c != 0)
1391 e x i t (−1);
1392

1393 rc = GetHostInfo () ;
1394 i f (r c == −1)
1395 e x i t (−1);
1396

1397 #i f n d e f TRANSIS_BYPASS
1398 rc = SetUpTransis () ;
1399 i f (r c == −1)
1400 e x i t (−1);
1401

1402 rc = StartTrans i sRece iveThread () ;
1403 i f (r c == −1)
1404 e x i t (−1);
1405 #end i f
1406

1407 #i f d e f FAKE_MDS
1408 f o r (; ;) { } /∗ Let Trans i s run . . . ∗/
1409 #e l s e
1410 rc = S ta r t I n t e r c ep t o rS e r v e r () ;
1411 i f (r c == −1)
1412 e x i t (−1);
1413

1414 rc = MessagePassOn () ;
1415 i f (r c == −1)
1416 e x i t (−1);
1417 #end i f
1418

1419 #i f n d e f TRANSIS_BYPASS
1420 rc = LeaveTransis () ;
1421 i f (r c == −1)
1422 e x i t (−1);
1423 #end i f
1424

103

A. Appendix

1425 e x i t (0) ;
1426 }
1427

1428

1429 // −−
1430 // End o f f i l e
1431 // −−

A.1.2 lustreHAdaemon.h

1 // −−
2 // Lustre High Ava i l a b i l i t y Daemon
3 //
4 // lustreHAdaemon . h −−header f i l e −−
5 //
6 // ve r s i on 0 .52 rev
7 //
8 // by Matthias Weber
9 // −−

10

11 #i f n d e f LUSTREHADAEMON_H
12

13 #inc lude <s td i o . h>
14 #inc lude <s t r i n g . h>
15 #inc lude <s t d l i b . h>
16 #inc lude <f c n t l . h>
17 #inc lude <sys / types . h>
18 #inc lude <sys / socke t . h>
19 #inc lude <sys / time . h>
20 #inc lude <netdb . h>
21 #inc lude <errno . h>
22 #inc lude <pthread . h>
23 #inc lude <s tdde f . h>
24 #inc lude <ctype . h>
25 #inc lude <arpa/ i n e t . h>
26 #inc lude <ne t i n e t / in . h>
27 #inc lude <uni s td . h>
28

29

30 // Def ine s
31 #de f i n e HOSTNAME_LENGTH 20
32 #de f i n e NUM_CONNECTIONS 10
33 /∗ MDS/Connection Table Lock d e f i n e s ∗/
34 #de f i n e SET 1
35 #de f i n e UNSET 0
36 typede f s t r u c t {
37 unsigned i n t count ; /∗ number o f connect i ons ∗/
38 s t r u c t {
39 i n t id ; /∗ the connect ion id o f entry ∗/
40 char IPAddress [2 0] ; /∗ the IP address o f the c l i e n t , NULL i f not connected ∗/
41 i n t MDSLock ; /∗ connect ion to MDS in prog r e s s (1) / e s t ab l i s h ed (0) ∗/
42 i n t MDSSocket ; /∗ i d e n t i f i e r o f MDS socket ∗/
43 i n t C l i entSocket ; /∗ i d e n t i f i e r o f C l i en t socket , −1 i f no connect ion e x i s t s ∗/
44 i n t MessageType ; /∗ next message accord ing to Lustre Protoco l (t r a n s i s . h) ∗/
45 } ∗ connect ion ; /∗ connect ion in fo rmat ion s t r u c t ∗/
46 } connect ion_table_t ;
47

48

49 // Prototypes
50 i n t GetHostInfo () ;
51 i n t S t a r t I n t e r c ep t o rS e r v e r () ;

104

A.1. Lustre HA Daemon Source Code

52 i n t MessagePassOn () ;
53 i n t CloseConnect ion (i n t id) ;
54 i n t GetNewClient () ;
55 i n t ConnectToMDS (i n t id) ;
56 i n t ReceiveAcceptorRequest (i n t id , i n t socket , i n t t a r g e t) ;
57 i n t ReceiveLNETHello (i n t id , i n t socket , i n t t a r g e t) ;
58 i n t ReceiveLustreMessage (i n t id , i n t socket , i n t t a r g e t) ;
59 i n t Rece iveBuf f e r (i n t fd , void ∗ bu f f e r , unsigned i n t length ,
60 unsigned i n t b lock) ;
61 i n t SendBuffer (i n t fd , const void ∗ bu f f e r , unsigned i n t l ength) ;
62 i n t AddEntryToConnectionTable (i n t id , i n t MDSSocket , i n t Cl i entSocket ,
63 char ∗ ipAddress) ;
64 i n t EditConnectionTableEntry (i n t id , i n t MDSSocket , i n t Cl i entSocket ,
65 char ∗ ipAddress) ;
66 i n t RemoveEntryFromConnectionTable (i n t id) ;
67 void GetConnectionID (i n t ∗ id) ;
68 i n t CheckConnectionID (i n t id) ;
69 i n t GetNumberOfEnties () ;
70 i n t GetSocketFromConnectionTable (i n t id , i n t choose , i n t ∗ socke t) ;
71 i n t GetMDSLock (i n t id) ;
72 i n t EditMDSLock (i n t id , i n t l o ckSta tus) ;
73 i n t GetMessageType (i n t id , i n t ∗messageType) ;
74 i n t SetMessageType (i n t id , i n t messageType) ;
75

76

77 // Globals
78 extern s t r u c t hostent ∗ ho s t i n f o ; /∗ hold host in fo rmat ion ∗/
79 extern pthread_mutex_t mutexCT ; /∗ pthread lock f o r connect ion tab l e ∗/
80

81 #end i f
82

83

84 // −−
85 // End o f f i l e
86 // −−

A.1.3 transis.c

1 // −−
2 // Lustre High Ava i l a b i l i t y Daemon
3 //
4 // t r a n s i s . c −−source f i l e −−
5 //
6 // ve r s i on 0 .52 rev
7 //
8 // by Matthias Weber
9 // −−

10

11

12 #inc lude "transis.h"

13 #inc lude "lustreHAdaemon.h"

14 #inc lude "lustreMessageAdjust.h"

15

16

17 // Globals
18 __u8 fi leCounterTR = 0 ; /∗ counter f o r debug f i l e s Trans i s Receive ∗/
19 __u8 f i l eCounterTS = 0 ; /∗ counter f o r debug f i l e s Trans i s Send ∗/
20 __s8 Buf ferToTrans i s [MAX_MSG_SIZE] ;
21 __s8 BufferFromTransis [MAX_MSG_SIZE] ;
22 pthread_t ReceiveThread ; /∗ t r a n s i s r e c e i v e thread ∗/
23 pthread_mutex_t mutexTRANSIS ; /∗ pthread lock f o r t r a n s i s ∗/

105

A. Appendix

24 s t a t i c zzz_mbox_cap TransisGroup ; /∗ Trans i s Group ∗/
25

26

27 // −−
28 // connect to t r a n s i s deamon , j o i n MDS group ,
29 // and s e t up r e c e i v e handler
30 //
31 // r e tu rn s : 0 on suc c e s s / −1 i f e r r o r occurs
32 // −−
33 i n t SetUpTransis ()
34 {
35 /∗ connect to t r a n s i s ∗/
36 TransisGroup = zzz_Connect (hos t in f o−>h_name , (void ∗)0 , SET_GROUP_SERVICE) ;
37 i f (TransisGroup == 0) {
38 f p r i n t f (s tde r r , "error connecting to transis !\n") ;
39 r e turn −1;
40 }
41

42 /∗ j o i n group ∗/
43 zzz_Join (TransisGroup , GROUPNAME) ;
44

45 /∗ s e t up message r e c e i v e handler ∗/
46 zzz_Add_Upcall (TransisGroup , Trans isRece iveHandler , USER_PRIORITY, 0) ;
47

48 r e turn 0 ;
49 }
50

51

52 // −−
53 // removes r e c e i v e handler and l e av e s MDS group
54 //
55 // r e tu rn s : 0 on suc c e s s / −1 i f e r r o r occurs
56 // −−
57 i n t LeaveTransis ()
58 {
59 i n t rc ;
60

61 /∗ remove r e c e i v e handler ∗/
62 rc = zzz_Remove_Upcall (TransisGroup) ;
63 i f (r c == −1){
64 f p r i n t f (s tde r r , "error removing receive handler\n") ;
65 r e turn −1;
66 }
67

68 /∗ l e av ing group ∗/
69 zzz_Leave (TransisGroup , GROUPNAME) ;
70

71 r e turn 0 ;
72 }
73

74

75 // −−
76 // s t a r t s thread that l i s t e n s to t r a n s i s f o r pending messages
77 //
78 // r e tu rn s : 0 on suc c e s s / −1 i f e r r o r occurs
79 // −−
80 i n t StartTrans i sRece iveThread ()
81 {
82 i n t rc ;
83

84 /∗ s t a r t thread ∗/
85 rc = pthread_create(&ReceiveThread , NULL, Transis_Receive_Thread , NULL) ;
86 i f (r c != 0) {

106

A.1. Lustre HA Daemon Source Code

87 per ro r ("error creating Transis receive thread") ;
88 r e turn −1;
89 }
90

91 p r i n t f ("Thread listening to Transis started .\n") ;
92 r e turn 0 ;
93 }
94

95

96 // −−
97 // Thread that g i v e s c on t r o l to Trans i s . Trans i s p o l l s f o r pending
98 // messages and invokes Trans i sRece iveHandler to dea l with messages .
99 //

100 // −−
101 void ∗Transis_Receive_Thread ()
102 {
103 /∗ g ive c on t r o l to t r a n s i s ∗/
104 E_main_loop () ;
105

106 pthread_exit (NULL) ;
107 }
108

109

110 // −−
111 // handler invoked i f t r a n s i s message i s pending
112 //
113 // −−
114 void Trans i sRece iveHandler ()
115 {
116 i n t rc ;
117

118 /∗ r e c e i v e pending message ∗/
119 rc = ReceiveTrans isMessage () ;
120 i f (r c == −1){
121 f p r i n t f (s tde r r , "error receiving transis message\n") ;
122 }
123 }
124

125

126 // −−
127 // check r e c e i v ed message from Trans i s and invoke appropr ia te
128 // func t i on to dea l with message
129 //
130 // r e tu rn s : 0 on suc c e s s / −1 i f e r r o r occurs
131 // −−
132 i n t CheckTransisMessage ()
133 {
134 #i f n d e f FAKE_MDS
135 i n t rc ;
136 __u32 ∗ type ;
137

138 /∗ s e t po in t e r to message type ∗/
139 type = (__u32 ∗) BufferFromTransis ;
140

141 /∗ proce s s message ∗/
142 switch (∗ type) {
143 case CREATE_CONNECTION:
144 rc = ConnectToMDS(∗ (type +2)) ; /∗ ∗(type+2) po in t e r to connect ion id ∗/
145 i f (r c == −1)
146 r e turn −1;
147 break ;
148 case LUSTRE_ACCEPTOR_CONNREQ:
149 rc = CheckAndSendAcceptorRequest () ;

107

A. Appendix

150 i f (r c == −1)
151 r e turn −1;
152 break ;
153 case LUSTRE_LNET_HELLO:
154 rc = CheckAndSendLNETHello () ;
155 i f (r c == −1)
156 r e turn −1;
157 break ;
158 case LUSTRE_MESSAGE:
159 rc = CheckAndSendMessage () ;
160 i f (r c == −1)
161 r e turn −1;
162 break ;
163 de f au l t :
164 f p r i n t f (s tde r r , "Got wrong Transis message type!\n") ;
165 r e turn −1;
166 break ;
167 }
168 #e l s e
169 /∗ pr in t a dot in s t ead ∗/
170 p r i n t f (".") ;
171 #end i f
172

173 r e turn 0 ;
174 }
175

176

177 // −−
178 // r e c e i v e s message from Trans i s
179 //
180 // r e tu rn s : 0 on suc c e s s / −1 i f e r r o r occurs
181 // −−
182 i n t Rece iveTrans isMessage ()
183 {
184 i n t rc ;
185 i n t recvType ;
186 view ∗gview ;
187

188 /∗ obta in ing lock ∗/
189 rc = pthread_mutex_lock(&mutexTRANSIS) ;
190 i f (r c != 0) {
191 per ro r ("error obtaining transis lock") ;
192 r e turn −1;
193 }
194

195 /∗ r e c e i v e message ∗/
196 rc = zzz_Receive (TransisGroup , BufferFromTransis , MAX_MSG_SIZE, &recvType , &gview) ;
197 i f (r c == −1) {
198 f p r i n t f (s tde r r , "error receiving message from Transis .\n") ;
199 r e turn −1;
200 }
201

202 /∗ r e l e a s e l ock ∗/
203 rc = pthread_mutex_unlock(&mutexTRANSIS) ;
204 i f (r c != 0) {
205 per ro r ("error releasing transis lock") ;
206 r e turn −1;
207 }
208

209 i f (recvType != VIEW_CHANGE) {
210

211 #i f d e f DEBUG
212 {

108

A.1. Lustre HA Daemon Source Code

213 __u32 ∗ type ;
214 type = (__u32 ∗) BufferFromTransis ;
215 i f (∗ type != CREATE_CONNECTION){
216 i n t f i leTemp ;
217 char f i leName [3 0] ;
218 char f i leNumber [2 0] ;
219

220 s t r cpy (fi leName , "TRrecv") ;
221 s p r i n t f (f i leNumber , "%d" , f i leCounterTR++);
222 s t r c a t (f i leName , f i leNumber) ;
223

224 f i leTemp=open (fi leName , O_CREAT | O_TRUNC | O_RDWR, 0666) ;
225 i f (f i leTemp < 0){
226 per ro r ("error creating file") ;
227 r e turn −1;
228 }
229

230 rc = wr i t e (fi leTemp , BufferFromTransis , r c) ;
231 i f (r c == −1){
232 per ro r ("error writing to debug file") ;
233 r e turn −1;
234 }
235

236 rc = c l o s e (f i leTemp) ;
237 i f (r c == −1){
238 per ro r ("error closing debug file") ;
239 r e turn −1;
240 }
241 }
242 }
243 #end i f
244

245 /∗ proce s s r e c e i v ed message ∗/
246 rc = CheckTransisMessage () ;
247 i f (r c == −1)
248 r e turn −1;
249 } e l s e {
250 /∗ d i sp l ay new group s t a tu s ∗/
251 p r i n t f ("change in group configuration :\n") ;
252 p r i n t f (" group is %s\n" , gview−>members [0]) ;
253 p r i n t f (" no. of clients is %ld\n" , gview−>nmembers) ;
254 }
255

256 r e turn 0 ;
257 }
258

259

260 // −−
261 // sends bu f f e r to Trans i s
262 //
263 // ∗message − po in t e r to the bu f f e r ho ld ing the message
264 // messageLength − l ength o f the message
265 //
266 // r e tu rn s : 0 on suc c e s s / −1 i f e r r o r occurs
267 // −−
268 i n t SendMessageToTransis (char ∗message , i n t messageLength)
269 {
270 i n t rc ;
271

272 /∗ check message l ength ∗/
273 i f (messageLength > MAX_MSG_SIZE){
274 f p r i n t f (s tde r r , "error message to big for transis: %i bytes\n" , messageLength) ;
275 r e turn −1;

109

A. Appendix

276 }
277

278 #i f d e f DEBUG
279 {
280 __u32 ∗ type ;
281 type = (__u32 ∗) message ;
282 i f (∗ type != CREATE_CONNECTION){
283 i n t f i leTemp ;
284 char f i leName [3 0] ;
285 char f i leNumber [2 0] ;
286

287 s t r cpy (fi leName , "TRsend") ;
288 s p r i n t f (f i leNumber , "%d" , f i l eCounterTS++);
289 s t r c a t (f i leName , f i leNumber) ;
290

291 f i leTemp=open (fi leName , O_CREAT | O_TRUNC | O_RDWR, 0666) ;
292 i f (f i leTemp < 0){
293 p r i n t f ("error creating file\n") ;
294 r e turn −1;
295 }
296

297 rc = wr i t e (fi leTemp , message , messageLength) ;
298 i f (r c == −1){
299 per ro r ("error writing to debug file") ;
300 r e turn −1;
301 }
302

303 rc = c l o s e (f i leTemp) ;
304 i f (r c == −1){
305 per ro r ("error closing debug file") ;
306 r e turn −1;
307 }
308 }
309 }
310 #end i f
311

312 /∗ obta in ing lock ∗/
313 rc = pthread_mutex_lock(&mutexTRANSIS) ;
314 i f (r c != 0) {
315 per ro r ("error obtaining transis lock") ;
316 r e turn −1;
317 }
318

319 /∗ send messages to t r a n s i s ∗/
320 rc = zzz_VaSend (TransisGroup , AGREED, 0 , messageLength , message , GROUPNAME, NULL) ;
321 i f (r c < messageLength){
322 f p r i n t f (s tde r r , "error sending message to transis !\n") ;
323 r e turn −1;
324 }
325

326 /∗ r e l e a s e l ock ∗/
327 rc = pthread_mutex_unlock(&mutexTRANSIS) ;
328 i f (r c != 0) {
329 per ro r ("error releasing transis lock") ;
330 r e turn −1;
331 }
332

333 r e turn 0 ;
334 }
335

336

337 // −−
338 // End o f f i l e

110

A.1. Lustre HA Daemon Source Code

339 // −−

A.1.4 transis.h

1 // −−
2 // Lustre High Ava i l a b i l i t y Daemon
3 //
4 // t r a n s i s . h −−header f i l e −−
5 //
6 // ve r s i on 0 .52 rev
7 //
8 // by Matthias Weber
9 // −−

10

11 #i f n d e f TRANSIS_H
12

13 #inc lude <s td i o . h>
14 #inc lude "zzz_layer.h" /∗ Trans i s ∗/
15 #inc lude "events.h" /∗ Trans i s Event handler ∗/
16

17

18 // Def ine s
19 #de f i n e GROUPNAME "MDSGroup"

20 /∗ de f i n e Trans i s message types ∗/
21 #de f i n e CREATE_CONNECTION 1 /∗ e s t a b l i s h connect ion to MDS ∗/
22 #de f i n e LUSTRE_ACCEPTOR_CONNREQ 2 /∗ Lustre acceptor connect ion reque s t ∗/
23 #de f i n e LUSTRE_LNET_HELLO 3 /∗ Lustre LNET he l l o message ∗/
24 #de f i n e LUSTRE_MESSAGE 4 /∗ ord inary Lustre message ∗/
25 /∗ Trans i s message t a r g e t s ∗/
26 #de f i n e MDS 0
27 #de f i n e CLIENT 1
28 #de f i n e NO_TARGET −1
29

30

31 // Prototypes
32 i n t SetUpTransis () ;
33 i n t LeaveTransis () ;
34 i n t StartTrans i sRece iveThread () ;
35 void ∗Transis_Receive_Thread () ;
36 void Trans i sRece iveHandler () ;
37 i n t CheckTransisMessage () ;
38 i n t Rece iveTrans isMessage () ;
39 i n t SendMessageToTransis (char ∗message , i n t messageLength) ;
40

41

42 // Globals
43 extern char Buf ferToTrans is [MAX_MSG_SIZE] ; /∗ bu f f e r ho ld ing messages to Trans i s ∗/
44 extern char BufferFromTransis [MAX_MSG_SIZE] ; /∗ bu f f e r ho ld ing messages from Trans i s ∗/
45

46 #end i f
47

48

49 // −−
50 // End o f f i l e
51 // −−

A.1.5 lustreMessageAdjust.c

1 // −−

111

A. Appendix

2 // Lustre High Ava i l a b i l i t y Daemon
3 //
4 // lust reMessageAdjust . c −−source f i l e −−
5 //
6 // ve r s i on 0 .52 rev
7 //
8 // by Matthias Weber
9 // −−

10

11

12 #inc lude "transis.h"

13 #inc lude "lustreHAdaemon.h"

14 #inc lude "lustreMessageAdjust.h"

15

16

17 // Globals
18 char i pS t r i n g [1 2 8] ; /∗ Array to hold ip s t r i n g f o r message ad jus t ope ra t i on s ∗/
19 __u8 f i l eCounte rS = 0 ; /∗ counter f o r debug f i l e s Send ∗/
20

21

22 // −−
23 // Checks the acceptor r eque s t message and pas s e s the message on
24 //
25 // r e tu rn s : 0 on suc c e s s / −1 i f e r r o r occurs
26 // −−
27 i n t CheckAndSendAcceptorRequest ()
28 {
29 i n t rc ;
30 i n t socke t ;
31 __u32 id ;
32 __u32 ta r g e t ;
33 __u32 ∗hdrTran ; /∗ po in t e r to t r a n s i s message header ∗/
34 lnet_acceptor_connreq_t ∗ cr ; /∗ po in t e r to Lustre acceptor r eque s t message ∗/
35

36 /∗ s e t po in t e r to the s t r u c t u r e s in the bu f f e r ∗/
37 #i f n d e f TRANSIS_BYPASS
38 hdrTran = (__u32 ∗) BufferFromTransis ;
39 #e l s e
40 hdrTran = (__u32 ∗) Buf ferToTrans i s ;
41 #end i f
42 cr = (lnet_acceptor_connreq_t ∗) (hdrTran+4);
43

44 /∗ get message data from the t r a n s i s message header ∗/
45 id = ∗(hdrTran+2); /∗ connect ion id ∗/
46 t a r g e t = ∗(hdrTran+3); /∗ message t a r g e t ∗/
47

48 /∗ check acceptor r eque s t ∗/
49 /∗ check acceptor magic ∗/
50 i f (! lnet_accept_magic (cr−>acr_magic , LNET_PROTO_ACCEPTOR_MAGIC)) {
51 f p r i n t f (s tde r r , "No recognised acceptor magic\n") ;
52 r e turn −1;
53 }
54 /∗ check acceptor magic v e r s i on number ∗/
55 i f (cr−>acr_vers ion != LNET_PROTO_ACCEPTOR_VERSION) {
56 f p r i n t f (s tde r r , "wrong acceptor magic version\n") ;
57 r e turn −1;
58 }
59 /∗ check t a r g e t nid ∗/
60 i f (0 == strcmp (l i b c f s_n i d 2 s t r (cr−>acr_nid) , INTERCEPTOR_ADDR)) {
61 i f (t a r g e t == CLIENT){ /∗ message t a r g e t i s C l i en t ∗/
62 f p r i n t f (s tde r r , "Acceptor Packet from MDS to Client !!!\n") ;
63 r e turn −1;
64 } e l s e { /∗ message t a r g e t i s MDS ∗/

112

A.1. Lustre HA Daemon Source Code

65 change_str ing(&cr−>acr_nid , LUSTRE_MDS_ADDR) ;
66 }
67 }
68

69 /∗ get connect ion tab l e l ock ∗/
70 rc = pthread_mutex_lock(&mutexCT) ; /∗ get l ock ∗/
71 i f (r c != 0){
72 per ro r ("error getting connection table lock") ;
73 r e turn −1;
74 }
75

76 /∗ get socke t to send message to ∗/
77 rc = GetSocketFromConnectionTable (id , target , &socket) ;
78 switch (rc) {
79 case 0 :
80 /∗ OK, go on . . . ∗/
81 break ;
82 case −1:
83 f p r i n t f (s tde r r , "error getting socket from connection table\n") ;
84 /∗ r e l e a s e connect ion tab l e l ock ∗/
85 rc = pthread_mutex_unlock(&mutexCT) ; /∗ r e l e a s e l ock ∗/
86 i f (r c != 0){
87 per ro r ("error releasing connection table lock") ;
88 r e turn −1;
89 }
90 r e turn −1;
91 break ;
92 case −2:
93 /∗ OK, no connect ion , no r ep ly ;) ∗/
94 /∗ r e l e a s e connect ion tab l e l ock ∗/
95 rc = pthread_mutex_unlock(&mutexCT) ; /∗ r e l e a s e l ock ∗/
96 i f (r c != 0){
97 per ro r ("error releasing connection table lock") ;
98 r e turn −1;
99 }

100 r e turn 0 ;
101 break ;
102 }
103

104 /∗ r e l e a s e connect ion tab l e l ock ∗/
105 rc = pthread_mutex_unlock(&mutexCT) ; /∗ r e l e a s e l ock ∗/
106 i f (r c != 0){
107 per ro r ("error releasing connection table lock") ;
108 r e turn −1;
109 }
110

111 #i f d e f DEBUG
112 {
113 i n t f i leTemp ;
114 char f i leName [3 0] ;
115 char f i leNumber [2 0] ;
116

117 s t r cpy (fi leName , "send") ;
118 s p r i n t f (f i leNumber , "%d" , f i l eCount e rS++);
119 s t r c a t (f i leName , f i leNumber) ;
120

121 f i leTemp=open (fi leName , O_CREAT | O_TRUNC | O_RDWR, 0666) ;
122 i f (f i leTemp < 0){
123 per ro r ("error creating file") ;
124 r e turn −1;
125 }
126

127 rc = wr i t e (fi leTemp , cr , s i z e o f (lnet_acceptor_connreq_t)) ;

113

A. Appendix

128 i f (r c == −1){
129 per ro r ("error writing to debug file") ;
130 r e turn −1;
131 }
132

133 rc = c l o s e (f i leTemp) ;
134 i f (r c == −1){
135 per ro r ("error closing debug file") ;
136 r e turn −1;
137 }
138 }
139 #end i f
140

141 /∗ pass on Lustre acceptor r eque s t message ∗/
142 rc = SendBuffer (socket , cr , s i z e o f (lnet_acceptor_connreq_t)) ;
143 switch (rc) {
144 case −1:
145 f p r i n t f (s tde r r , "Error sending Acceptor Request .\n") ;
146 r e turn −1;
147 break ;
148 case −2:
149 f p r i n t f (s tde r r , "peer closed connection .\n") ;
150 r e turn −1;
151 break ;
152 case 0 :
153 /∗ OK, go on . . . ∗/
154 break ;
155 }
156

157 r e turn 0 ;
158 }
159

160

161 // −−
162 // Checks the LNET he l l o message and pas s e s the message on
163 //
164 // r e tu rn s : 0 i f s u c c e s s / −1 i f e r r o r occurs
165 // −−
166 i n t CheckAndSendLNETHello ()
167 {
168 i n t rc ;
169 i n t socke t ;
170 __u32 id ;
171 __u32 ta r g e t ;
172 lnet_hdr_t ∗hdr ; /∗ po in t e r to Lustre message header ∗/
173 lnet_magicvers ion_t ∗hmv; /∗ po in t e r to Lustre Magic ∗/
174 __u32 ∗hdrTran ; /∗ po in t e r to t r a n s i s message header ∗/
175

176 /∗ s e t po in t e r to the s t r u c t u r e s in the bu f f e r ∗/
177 #i f n d e f TRANSIS_BYPASS
178 hdrTran = (__u32 ∗) BufferFromTransis ;
179 #e l s e
180 hdrTran = (__u32 ∗) Buf ferToTrans i s ;
181 #end i f
182 hdr = (lnet_hdr_t ∗) (hdrTran+4);
183 hmv = (lnet_magicvers ion_t ∗)&hdr−>dest_nid ;
184

185 /∗ get message data from the t r a n s i s message header ∗/
186 id = ∗(hdrTran+2); /∗ connect ion id ∗/
187 t a r g e t = ∗(hdrTran+3); /∗ message t a r g e t ∗/
188

189 /∗ check LNET he l l o header ∗/
190 /∗ check magic ∗/

114

A.1. Lustre HA Daemon Source Code

191 i f (hmv−>magic != le32_to_cpu (LNET_PROTO_TCP_MAGIC)) {
192 f p r i n t f (s tde r r , "LNET TCP PROTO magic check failed !\n") ;
193 r e turn −1;
194 }
195 /∗ check magic v e r s i on ∗/
196 i f (hmv−>version_major != cpu_to_le16 (LNET_PROTO_TCP_VERSION_MAJOR) | |
197 hmv−>version_minor != cpu_to_le16 (LNET_PROTO_TCP_VERSION_MINOR)) {
198 f p r i n t f (s tde r r , "LNET TCP PROTO magic version check failed !\n") ;
199 r e turn −1;
200 }
201 /∗ check header type ∗/
202 i f (hdr−>type != cpu_to_le32 (LNET_MSG_HELLO)) {
203 f p r i n t f (s tde r r , "Expecting a HELLO header , but got type %ld\n" ,
204 le32_to_cpu (hdr−>type)) ;
205 r e turn −1;
206 }
207 /∗ check source address ∗/
208 i f (le64_to_cpu (hdr−>src_nid) == LNET_NID_ANY) {
209 f p r i n t f (s tde r r , "Expecting a HELLO header with a NID , but got LNET_NID_ANY\n") ;
210 r e turn −1;
211 }
212 /∗ change source address ∗/
213 i f (0 == strcmp (l i b c f s_n i d 2 s t r (hdr−>src_nid) ,CLIENT_ADDR) | |
214 0 == strcmp (l i b c f s_n i d 2 s t r (hdr−>src_nid) ,LUSTRE_MDS_ADDR))
215 change_str ing(&hdr−>src_nid , INTERCEPTOR_ADDR) ;
216

217 /∗ get connect ion tab l e l ock ∗/
218 rc = pthread_mutex_lock(&mutexCT) ; /∗ get l ock ∗/
219 i f (r c != 0){
220 per ro r ("error getting connection table lock") ;
221 r e turn −1;
222 }
223

224 /∗ get socke t to send message to ∗/
225 rc = GetSocketFromConnectionTable (id , target , &socket) ;
226 switch (rc) {
227 case 0 :
228 /∗ OK, go on . . . ∗/
229 break ;
230 case −1:
231 f p r i n t f (s tde r r , "error getting socket from connection table\n") ;
232 /∗ r e l e a s e connect ion tab l e l ock ∗/
233 rc = pthread_mutex_unlock(&mutexCT) ; /∗ r e l e a s e l ock ∗/
234 i f (r c != 0){
235 per ro r ("error releasing connection table lock") ;
236 r e turn −1;
237 }
238 r e turn −1;
239 break ;
240 case −2:
241 /∗ OK, no connect ion , no r ep ly ;) ∗/
242 /∗ r e l e a s e connect ion tab l e l ock ∗/
243 rc = pthread_mutex_unlock(&mutexCT) ; /∗ r e l e a s e l ock ∗/
244 i f (r c != 0){
245 per ro r ("error releasing connection table lock") ;
246 r e turn −1;
247 }
248 r e turn 0 ;
249 break ;
250 }
251

252 /∗ r e l e a s e connect ion tab l e l ock ∗/
253 rc = pthread_mutex_unlock(&mutexCT) ; /∗ r e l e a s e l ock ∗/

115

A. Appendix

254 i f (r c != 0){
255 per ro r ("error releasing connection table lock") ;
256 r e turn −1;
257 }
258

259 #i f d e f DEBUG
260 {
261 i n t f i leTemp ;
262 char f i leName [3 0] ;
263 char f i leNumber [2 0] ;
264

265 s t r cpy (fi leName , "send") ;
266 s p r i n t f (f i leNumber , "%d" , f i l eCount e rS++);
267 s t r c a t (f i leName , f i leNumber) ;
268

269 f i leTemp=open (fi leName , O_CREAT | O_TRUNC | O_RDWR, 0666) ;
270 i f (f i leTemp < 0){
271 per ro r ("error creating file") ;
272 r e turn −1;
273 }
274

275 rc = wr i t e (fi leTemp , hdr , s i z e o f (lnet_hdr_t)) ;
276 i f (r c == −1){
277 per ro r ("error writing to debug file") ;
278 r e turn −1;
279 }
280

281 rc = c l o s e (f i leTemp) ;
282 i f (r c == −1){
283 per ro r ("error closing debug file") ;
284 r e turn −1;
285 }
286 }
287 #end i f
288

289 /∗ pass on Lustre LNET he l l o ∗/
290 rc = SendBuffer (socket , hdr , s i z e o f (lnet_hdr_t)) ;
291 switch (rc) {
292 case −1:
293 f p r i n t f (s tde r r , "Error sending Message .\n") ;
294 r e turn −1;
295 break ;
296 case −2:
297 f p r i n t f (s tde r r , "peer closed connection .\n") ;
298 r e turn −1;
299 break ;
300 case 0 :
301 /∗ OK, go on . . . ∗/
302 break ;
303 }
304

305 r e turn 0 ;
306 }
307

308

309 // −−
310 // Checks a Lustre message and pas s e s the message on
311 //
312 // r e tu rn s : 0 on suc c e s s / −1 i f e r r o r occurs
313 // −−
314 i n t CheckAndSendMessage ()
315 {
316 i n t rc ;

116

A.1. Lustre HA Daemon Source Code

317 i n t socke t ;
318 __u32 id ;
319 __u32 ta r g e t ;
320 __u32 trans i sMessageLength ; /∗ l ength o f the t r a n s i s message ∗/
321 __u32 trans i sHeaderLength ; /∗ l ength o f the t r a n s i s message header ∗/
322 lnet_hdr_t ∗hdr ; /∗ po in t e r to Lustre message header ∗/
323 __u32 ∗hdrTran ; /∗ po in t e r to t r a n s i s message header ∗/
324

325 /∗ s e t po in t e r to the s t r u c t u r e s in the bu f f e r ∗/
326 #i f n d e f TRANSIS_BYPASS
327 hdrTran = (__u32 ∗) BufferFromTransis ;
328 #e l s e
329 hdrTran = (__u32 ∗) Buf ferToTrans i s ;
330 #end i f
331 hdr = (lnet_hdr_t ∗) (hdrTran+4);
332

333 /∗ get message data from the t r a n s i s message header ∗/
334 t rans i sHeaderLength = 4∗ s i z e o f (__u32) ; /∗ l ength o f the t r a n s i s message header ∗/
335 trans i sMessageLength = ∗(hdrTran+1); /∗ l ength o f the e n t i r e t r a n s i s message ∗/
336 id = ∗(hdrTran+2); /∗ connect ion id ∗/
337 t a r g e t = ∗(hdrTran+3); /∗ message t a r g e t ∗/
338

339 /∗ ad jus t ip addesses in Lustre message header ∗/
340 i f (0 == strcmp (l i b c f s_n i d 2 s t r (hdr−>src_nid) ,CLIENT_ADDR) | |
341 0 == strcmp (l i b c f s_n i d 2 s t r (hdr−>src_nid) ,LUSTRE_MDS_ADDR))
342 change_str ing(&hdr−>src_nid , INTERCEPTOR_ADDR) ;
343

344 i f (0 == strcmp (l i b c f s_n i d 2 s t r (hdr−>dest_nid) , INTERCEPTOR_ADDR)) {
345 i f (t a r g e t == MDS) /∗ message t a r g e t i s MDS ∗/
346 change_str ing(&hdr−>dest_nid , LUSTRE_MDS_ADDR) ;
347 e l s e /∗ message t a r g e t i s C l i en t ∗/
348 change_str ing(&hdr−>dest_nid , CLIENT_ADDR) ;
349 }
350

351 /∗ get connect ion tab l e l ock ∗/
352 rc = pthread_mutex_lock(&mutexCT) ; /∗ get l ock ∗/
353 i f (r c != 0){
354 per ro r ("error getting connection table lock") ;
355 r e turn −1;
356 }
357

358 /∗ get socke t to send message to ∗/
359 rc = GetSocketFromConnectionTable (id , target , &socket) ;
360 switch (rc) {
361 case 0 :
362 /∗ OK, go on . . . ∗/
363 break ;
364 case −1:
365 f p r i n t f (s tde r r , "error getting socket from connection table\n") ;
366 /∗ r e l e a s e connect ion tab l e l ock ∗/
367 rc = pthread_mutex_unlock(&mutexCT) ; /∗ r e l e a s e l ock ∗/
368 i f (r c != 0){
369 per ro r ("error releasing connection table lock") ;
370 r e turn −1;
371 }
372 r e turn −1;
373 break ;
374 case −2:
375 /∗ OK, no connect ion , no r ep ly ;) ∗/
376 /∗ r e l e a s e connect ion tab l e l ock ∗/
377 rc = pthread_mutex_unlock(&mutexCT) ; /∗ r e l e a s e l ock ∗/
378 i f (r c != 0){
379 per ro r ("error releasing connection table lock") ;

117

A. Appendix

380 r e turn −1;
381 }
382 r e turn 0 ;
383 break ;
384 }
385

386 /∗ r e l e a s e connect ion tab l e l ock ∗/
387 rc = pthread_mutex_unlock(&mutexCT) ; /∗ r e l e a s e l ock ∗/
388 i f (r c != 0){
389 per ro r ("error releasing connection table lock") ;
390 r e turn −1;
391 }
392

393 #i f d e f DEBUG
394 {
395 i n t f i leTemp ;
396 char f i leName [3 0] ;
397 char f i leNumber [2 0] ;
398

399 s t r cpy (fi leName , "send") ;
400 s p r i n t f (f i leNumber , "%d" , f i l eCount e rS++);
401 s t r c a t (f i leName , f i leNumber) ;
402

403 f i leTemp=open (fi leName , O_CREAT | O_TRUNC | O_RDWR, 0666) ;
404 i f (f i leTemp < 0){
405 per ro r ("error creating file") ;
406 r e turn −1;
407 }
408

409 rc = wr i t e (fi leTemp , hdr , trans isMessageLength−t rans i sHeaderLength) ;
410 i f (r c == −1){
411 per ro r ("error writing to debug file") ;
412 r e turn −1;
413 }
414

415 rc = c l o s e (f i leTemp) ;
416 i f (r c == −1){
417 per ro r ("error closing debug file") ;
418 r e turn −1;
419 }
420 }
421 #end i f
422

423 /∗ pass on complete Lustre message ∗/
424 rc = SendBuffer (socket , hdr , trans isMessageLength−t rans i sHeaderLength) ;
425 switch (rc) {
426 case −1:
427 f p r i n t f (s tde r r , "Error sending Message .\n") ;
428 r e turn −1;
429 break ;
430 case −2:
431 f p r i n t f (s tde r r , "peer closed connection .\n") ;
432 r e turn −1;
433 break ;
434 case 0 :
435 /∗ OK, go on . . . ∗/
436 break ;
437 }
438

439 r e turn 0 ;
440 }
441

442

118

A.1. Lustre HA Daemon Source Code

443 // −−
444 // Lustre Code . . .
445 // −−
446 char ∗ l i b c f s_n i d 2 s t r (lnet_nid_t nid)
447 {
448 __u32 addr = LNET_NIDADDR(nid) ;
449

450 s np r i n t f (ipSt r ing , LNET_NIDSTR_SIZE, "%u.%u.%u.%u" ,
451 ((unsigned i n t) addr >> 24) & 0 x f f , ((unsigned i n t) addr >> 16) & 0 x f f ,
452 ((unsigned i n t) addr >> 8) & 0 x f f , (unsigned i n t) addr & 0 x f f) ;
453

454 r e turn i pS t r i n g ;
455 }
456

457 i n t l i bc f s_ ip_st r2addr (char ∗ s t r , i n t nob , __u32 ∗addr)
458 {
459 i n t a ;
460 i n t b ;
461 i n t c ;
462 i n t d ;
463 i n t n = nob ; /∗ XscanfX ∗/
464

465 /∗ numeric IP? ∗/
466 i f (s s c an f (s t r , "%u.%u.%u.%u%n" , &a , &b , &c , &d , &n) >= 4 &&
467 n == nob &&
468 (a & ~0 x f f) == 0 && (b & ~0 x f f) == 0 &&
469 (c & ~0 x f f) == 0 && (d & ~0 x f f) == 0) {
470 ∗addr = ((a<<24)|(b<<16)|(c<<8)|d) ;
471 r e turn 1 ;
472 }
473 r e turn 0 ;
474 }
475

476 void change_str ing (lnet_nid_t ∗nid , char ∗ s t r)
477 {
478 __u32 ∗addrp ;
479 __u32 addr = LNET_NIDADDR(∗ nid) ;
480 __u32 net = LNET_NIDNET (∗ nid) ;
481

482 addrp = &addr ;
483 l i b c f s_ ip_st r2addr (s t r , s t r l e n (s t r) , addrp) ;
484 ∗nid = LNET_MKNID(net , addr) ;
485 }
486

487 i n t lnet_accept_magic (__u32 magic , __u32 constant)
488 {
489 r e turn (magic == constant | | magic == __swab32(constant)) ;
490 }
491

492

493 // −−
494 // End o f f i l e
495 // −−

A.1.6 lustreMessageAdjust.h

1 // −−
2 // Lustre High Ava i l a b i l i t y Daemon
3 //
4 // lust reMessageAdjust . h −−header f i l e −−
5 //

119

A. Appendix

6 // ve r s i on 0 .52 rev
7 //
8 // by Matthias Weber
9 // −−

10

11

12 #i f n d e f LUSTREMESSAGEADJUST_H
13

14 #inc lude <sys / uio . h>
15 #inc lude <sys / types . h>
16 #inc lude <s td i o . h>
17 #inc lude <s tdde f . h>
18 #inc lude <f c n t l . h>
19

20

21 // −−
22 // Lustre Data
23 // −−
24

25 #i f n d e f __KERNEL__
26 /∗ Userpace byte f l i p p i n g ∗/
27 # inc lude <endian . h>
28 # inc lude <byteswap . h>
29 # de f i n e __swab16(x) bswap_16(x)
30 # de f i n e __swab32(x) bswap_32(x)
31 # de f i n e __swab64(x) bswap_64(x)
32 # de f i n e __swab16s (x) do {∗(x) = bswap_16 (∗ (x)) ; } whi l e (0)
33 # de f i n e __swab32s (x) do {∗(x) = bswap_32 (∗ (x)) ; } whi l e (0)
34 # de f i n e __swab64s (x) do {∗(x) = bswap_64 (∗ (x)) ; } whi l e (0)
35 # i f __BYTE_ORDER == __LITTLE_ENDIAN
36 # de f i n e le16_to_cpu (x) (x)
37 # de f i n e cpu_to_le16 (x) (x)
38 # de f i n e le32_to_cpu (x) (x)
39 # de f i n e cpu_to_le32 (x) (x)
40 # de f i n e le64_to_cpu (x) (x)
41 # de f i n e cpu_to_le64 (x) (x)
42 # e l s e
43 # i f __BYTE_ORDER == __BIG_ENDIAN
44 # de f i n e le16_to_cpu (x) bswap_16(x)
45 # de f i n e cpu_to_le16 (x) bswap_16(x)
46 # de f i n e le32_to_cpu (x) bswap_32(x)
47 # de f i n e cpu_to_le32 (x) bswap_32(x)
48 # de f i n e le64_to_cpu (x) bswap_64(x)
49 # de f i n e cpu_to_le64 (x) bswap_64(x)
50 # e l s e
51 # er r o r "Unknown byte order"

52 # end i f /∗ __BIG_ENDIAN ∗/
53 # end i f /∗ __LITTLE_ENDIAN ∗/
54 #end i f /∗ ! __KERNEL__ ∗/
55

56 typede f char __s8 ;
57 typede f unsigned char __u8;
58 typede f unsigned shor t __u16 ;
59 typede f unsigned long __u32 ;
60 typede f unsigned long long __u64 ;
61 typede f __u64 lnet_nid_t ;
62 typede f __u32 lnet_pid_t ;
63

64 #de f i n e LNET_NID_ANY ((lnet_nid_t) −1)
65 #de f i n e LNET_NIDSTR_SIZE 32 /∗ s i z e o f each one (see below f o r usage) ∗/
66 #de f i n e LNET_NIDADDR(nid) ((__u32) ((nid) & 0 x f f f f f f f f))
67 #de f i n e LNET_NIDNET(nid) ((__u32) (((nid) >> 32)) & 0 x f f f f f f f f)
68 #de f i n e LNET_MKNID(net , addr) ((((__u64) (net)) <<32)|((__u64) (addr)))

120

A.1. Lustre HA Daemon Source Code

69

70 #de f i n e WIRE_ATTR __attribute__ ((packed))
71

72 #de f i n e LNET_PROTO_TCP_MAGIC 0xeebc0ded
73 #de f i n e LNET_PROTO_TCP_VERSION_MAJOR 1
74 #de f i n e LNET_PROTO_TCP_VERSION_MINOR 0
75 #de f i n e LNET_PROTO_ACCEPTOR_MAGIC 0xacce7100
76 #de f i n e LNET_PROTO_ACCEPTOR_VERSION 1
77

78 typede f enum {
79 LNET_MSG_ACK = 0 ,
80 LNET_MSG_PUT,
81 LNET_MSG_GET,
82 LNET_MSG_REPLY,
83 LNET_MSG_HELLO,
84 } lnet_msg_type_t ;
85

86 /∗ The wire handle ' s i n t e r f a c e cook i e only matches one network i n t e r f a c e in
87 ∗ one epoch (i . e . new cook i e when the i n t e r f a c e r e s t a r t s or the node
88 ∗ r eboot s) . The ob j e c t cook i e only matches one ob j e c t on that i n t e r f a c e
89 ∗ during that ob j e c t ' s l i f e t im e (i . e . no cook i e re−use) . ∗/
90 typede f s t r u c t {
91 __u64 wh_interface_cookie ;
92 __u64 wh_object_cookie ;
93 } WIRE_ATTR lnet_handle_wire_t ;
94

95 /∗ The var i an t f i e l d s o f the po r t a l s message header are a l i gned on an 8
96 ∗ byte boundary in the message header . Note that a l l types used in these
97 ∗ wire s t r u c t s MUST be f i x ed s i z e and the sma l l e r types are p laced at the
98 ∗ end . ∗/
99 typede f s t r u c t lnet_ack {

100 lnet_handle_wire_t dst_wmd ;
101 __u64 match_bits ;
102 __u32 mlength ;
103 } WIRE_ATTR lnet_ack_t ;
104

105 typede f s t r u c t lnet_put {
106 lnet_handle_wire_t ack_wmd ;
107 __u64 match_bits ;
108 __u64 hdr_data ;
109 __u32 ptl_index ;
110 __u32 o f f s e t ;
111 } WIRE_ATTR lnet_put_t ;
112

113 typede f s t r u c t lnet_get {
114 lnet_handle_wire_t return_wmd ;
115 __u64 match_bits ;
116 __u32 ptl_index ;
117 __u32 s r c_o f f s e t ;
118 __u32 s ink_length ;
119 } WIRE_ATTR lnet_get_t ;
120

121 typede f s t r u c t lnet_rep ly {
122 lnet_handle_wire_t dst_wmd ;
123 } WIRE_ATTR lnet_reply_t ;
124

125 typede f s t r u c t l n e t_he l l o {
126 __u64 inca rna t i on ;
127 __u32 type ;
128 } WIRE_ATTR lnet_hel lo_t ;
129

130 typede f s t r u c t {
131 lnet_nid_t dest_nid ;

121

A. Appendix

132 lnet_nid_t src_nid ;
133 lnet_pid_t dest_pid ;
134 lnet_pid_t src_pid ;
135 __u32 type ; /∗ lnet_msg_type_t ∗/
136 __u32 payload_length ; /∗ payload data to f o l l ow ∗/
137 /∗<−−−−−−__u64 a l igned−−−−−−−>∗/
138 union {
139 lnet_ack_t ack ;
140 lnet_put_t put ;
141 lnet_get_t get ;
142 lnet_reply_t r ep ly ;
143 lnet_hel lo_t h e l l o ;
144 } msg ;
145 } WIRE_ATTR lnet_hdr_t ;
146

147 typede f s t r u c t {
148 __u32 magic ; /∗ LNET_PROTO_TCP_MAGIC ∗/
149 __u16 version_major ; /∗ increment on incompat ib l e change ∗/
150 __u16 version_minor ; /∗ increment on compatible change ∗/
151 } WIRE_ATTR lnet_magicvers ion_t ;
152

153 typede f s t r u c t {
154 __u32 acr_magic ; /∗ PTL_ACCEPTOR_PROTO_MAGIC ∗/
155 __u32 acr_vers ion ; /∗ pro to co l v e r s i on ∗/
156 __u64 acr_nid ; /∗ t a r g e t NID ∗/
157 } lnet_acceptor_connreq_t ;
158

159

160 // −−
161 // In t e r c ep t o r Data
162 // −−
163

164 // Def ine s
165 #i f d e f INTERCEPTOR_CLIENT
166 #de f i n e INTERCEPTOR_ADDR "10.0.0.12"

167 #de f i n e LUSTRE_MDS_ADDR "10.0.0.10"

168 #e l i f INTERCEPTOR_CLIENT_ALONE
169 #de f i n e INTERCEPTOR_ADDR "10.0.0.12"

170 #de f i n e LUSTRE_MDS_ADDR "10.0.0.5"

171 #e l s e
172 #de f i n e INTERCEPTOR_ADDR "10.0.0.10"

173 #de f i n e LUSTRE_MDS_ADDR "10.0.0.5"

174 #end i f
175 #de f i n e CLIENT_ADDR "10.0.0.1"

176 #de f i n e LUSTRE_SERVER_PORT 988
177 #de f i n e LUSTRE_MIN_ACC_PORT 512
178 #de f i n e LUSTRE_MAX_ACC_PORT 1023
179 #de f i n e MESSAGE_BUFFER_SIZE 4168 /∗ Lustre message s i z e : 4096(payload) + 72(header) ∗/
180 #de f i n e BLOCK 1 /∗ 1 b lock ing / 0 non−b lock ing communication ∗/
181

182

183 // Prototypes
184 i n t CheckAndSendAcceptorRequest () ;
185 i n t CheckAndSendLNETHello () ;
186 i n t CheckAndSendMessage () ;
187 // Lustre prototypes
188 char ∗ l i b c f s_n i d 2 s t r (lnet_nid_t nid) ;
189 i n t l i bc f s_ ip_st r2addr (char ∗ s t r , i n t nob , __u32 ∗addr) ;
190 void change_str ing (lnet_nid_t ∗nid , char ∗ s t r) ;
191 i n t lnet_accept_magic (__u32 magic , __u32 constant) ;
192

193 #end i f
194

122

A.1. Lustre HA Daemon Source Code

195

196 // −−
197 // End o f f i l e
198 // −−

A.1.7 Make�le

1 ## Makef i l e to c r e a t e the HA components f o r Lustre
2 ## Written by Matthias Weber
3 ##
4 ## usage :
5 ## three t a r g e t s to bu i ld :
6 ## interceptor_mds (d e f au l t) (p o s s i b l e f l a g : CPPFLAGS+=−DTRANSIS_BYPASS)
7 ## in t e r c e p t o r_c l i e n t (with f l a g s : CPPFLAGS+=−DINTERCEPTOR_CLIENT
8 ## CPPFLAGS+=−DTRANSIS_BYPASS)
9 ## fake_mds (with f l a g CPPFLAGS+=−DFAKE_MDS)

10 ##
11 ## add i t i o na l opt ion :
12 ## debug mode : CPPFLAGS+=−DDEBUG
13 ##
14 ## fo r cleanup :
15 ## clean (d e l e t e s a l l ob j e c t f i l e s and execu tab l e s)
16 ## clean_objec t s (d e l e t e s a l l ob j e c t f i l e s)
17 ## clean_debug_f i l es (d e l e t e s the f i l e s c r ea ted in debug mode)
18 ##
19 ## CPPFLAGS:
20 ## DEBUG − enable debug mode
21 ## INTERCEPTOR_CLIENT − switch ip addre s s e s to c l i e n t (use o f MDS
22 ## in t e r c e p t o r as MDS)
23 ## INTERCEPTOR_CLIENT_ALONE − switch ip addre s s e s to c l i e n t (use o f Lustre
24 ## MDS d i r e c t l y)
25 ## FAKE_MDS − j u s t work as t r a n s i s c l i e n t and don ' t use r e a l MDS
26 ## TRANSIS_BYPASS − no use o f t r a n s i s
27 ##
28 ## example :
29 ## make i n t e r c e p t o r_c l i e n t −e CPPFLAGS+=−DDEBUG CPPFLAGS+=−DINTERCEPTOR_CLIENT
30 ## CPPFLAGS+=−DTRANSIS_BYPASS
31

32

33 ## Compiler
34 CC = gcc
35

36 ## Trans i s d i r e c t o r y
37 BASEDIR=/usr / s r c / t r a n s i s
38

39 ## Trans i s i n c lude d i r e c t o r i e s
40 INCLUDEDIR=$ (BASEDIR)/ inc lude /
41 LIBDIR=$ (BASEDIR)/ bin /LINUX/
42

43 ## Trans i s f l a g s
44 TRANSISLIBS=−L$(LIBDIR) − l t r a n s i s
45

46 ## Compiler f l a g s
47 CFLAGS=−I$ (INCLUDEDIR) −Wall
48

49 ## lpthread f l a g s
50 LPTHREAD=−l p thread
51

52 ## the ob j e c t s
53 OBJECTS = lustreHAdaemon . o lust reMessageAdjust . o t r a n s i s . o
54

123

A. Appendix

55 a l l : interceptor_mds
56

57 interceptor_mds : c l ean_objec t s $ (OBJECTS)
58 @echo "building Lustre MDS Interceptor ..."

59 @$(CC) −o lustre_MDS_Interceptor $ (OBJECTS) $ (TRANSISLIBS) $ (LPTHREAD)
60 @echo "done"

61

62 i n t e r c e p t o r_c l i e n t : c l ean_objec t s $ (OBJECTS)
63 @echo "building Lustre Client Interceptor ..."

64 @$(CC) −o lustre_CLIENT_Interceptor $ (OBJECTS) $ (TRANSISLIBS) $ (LPTHREAD)
65 @echo "done"

66

67 fake_mds : c l ean_objec t s $ (OBJECTS)
68 @echo "building Lustre Fake MDS ..."

69 @$(CC) −o lustre_Fake_MDS $ (OBJECTS) $ (TRANSISLIBS) $ (LPTHREAD)
70 @echo "done"

71

72 c l ean :
73 @echo "cleaning all executables and object files ..."

74 @/bin /rm −f lustre_Fake_MDS lustre_CLIENT_Interceptor lustre_MDS_Interceptor ∗ . o
75 @echo "done"

76

77 c l ean_objec t s :
78 @echo "cleaning object files ..."

79 @/bin /rm −f ∗ . o
80 @echo "done"

81

82 c lean_debug_f i l es :
83 @echo "cleaning debug files ..."

84 @/bin /rm −f send∗ recv ∗ TR∗
85 @echo "done"

86

87 %.o : %.c
88 @echo "compiling file ..."

89 @$(CC) $ (CFLAGS) $ (CPPFLAGS) −c $< −o $@
90 @echo "done"

124

A.2. Benchmark Program Source Code

A.2 Benchmark Program Source Code

A.2.1 benchmarkProgram.c

1 // −−
2 // Benchmark Programm fo r the
3 // Lustre High Ava i l a b i l i t y Daemon
4 //
5 // benchmarkProgram . c −−source f i l e −−
6 //
7 // ve r s i on 1 .0
8 //
9 // by Matthias Weber

10 // −−
11

12

13 #inc lude "benchmarkProgram.h"

14

15

16 // Globals
17 __u64 NumberOfFiles ;
18 __u64 NumberOfTests ;
19 i n t ∗Fi l eDesc r ip to rAr ray ;
20 char ∗∗FileNameArray ;
21 time_data_t ∗ timeData ;
22

23

24 // −−
25 // s e t s up the needed va lue s to perform the t e s t s
26 //
27 // r e tu rn s : 0 on suc c e s s / −1 i f e r r o r occurs
28 // −−
29 i n t Set_Up_Values ()
30 {
31 __u64 i ;
32 char f i leNumber [2 0] ;
33

34 /∗ a l l o c a t e memory to hold r e s u l t s o f t e s t runs ∗/
35 timeData = (time_data_t ∗) mal loc (NumberOfTests ∗ s i z e o f (time_data_t)) ;
36 i f (timeData == NULL)
37 r e turn −1;
38

39 /∗ a l l o c a t e memory to hold f i l e name and d e s c r i p t o r ∗/
40 Fi l eDesc r ip to rAr ray = (i n t ∗) mal loc (NumberOfFiles ∗ s i z e o f (i n t)) ;
41 i f (F i l eDesc r ip to rAr ray == NULL)
42 r e turn −1;
43

44 FileNameArray = (char ∗∗) mal loc (NumberOfFiles ∗ s i z e o f (char ∗)) ;
45 i f (FileNameArray == NULL)
46 r e turn −1;
47

48 f o r (i =0; i<NumberOfFiles ; i++){
49 FileNameArray [i] = (char ∗) mal loc (30 ∗ s i z e o f (char)) ;
50 i f (FileNameArray [i] == NULL)
51 r e turn −1;
52 }
53

54 /∗ c r e a t e f i l e names ∗/
55 f o r (i =0; i<NumberOfFiles ; i++){
56 s t r cpy (&FileNameArray [i] [0] , "/mnt/lustre/LTEST") ;

125

A. Appendix

57 s p r i n t f (f i leNumber , "%lld" , i) ;
58 s t r c a t (&FileNameArray [i] [0] , f i leNumber) ;
59 }
60

61 r e turn 0 ;
62 }
63

64

65 // −−
66 // c r e a t e s the s p e c i f i e d number o f f i l e s and measures time needed
67 // to do so
68 //
69 // r e tu rn s : 0 on suc c e s s / −1 i f e r r o r occurs
70 // −−
71 i n t Test_Open (__u64 run_number)
72 {
73 __u64 i ;
74 i n t rc ;
75 s t r u c t timezone tz ;
76 s t r u c t t imeva l t ime_before ;
77 s t r u c t t imeva l t ime_after ;
78 time_data_t ∗ time ;
79

80 time = &timeData [run_number] ;
81

82 /∗ get time be f o r e t e s t ∗/
83 rc = gett imeofday(&time_before , &tz) ;
84 i f (r c == −1)
85 r e turn −1;
86

87 f o r (i =0; i<NumberOfFiles ; i++){
88 /∗ c r e a t e f i l e ∗/
89 Fi l eDesc r ip to rAr ray [i] = open(&FileNameArray [i] [0] ,
90 O_CREAT | O_TRUNC | O_RDWR, 0666) ;
91 i f (F i l eDesc r ip to rAr ray [i] == −1) {
92 per ro r ("open") ;
93 r e turn −1;
94 }
95 /∗ c l o s e f i l e ∗/
96 rc = c l o s e (F i l eDesc r ip to rAr ray [i]) ;
97 i f (r c == −1) {
98 per ro r ("close") ;
99 r e turn −1;

100 }
101 }
102

103 /∗ get time a f t e r t e s t ∗/
104 rc = gett imeofday(&time_after , &tz) ;
105 i f (r c == −1)
106 r e turn −1;
107

108 /∗ get d i f f e r e n c e ∗/
109 time−>open_usec = ((t ime_after . tv_sec ∗1000000) + time_after . tv_usec) −
110 ((t ime_before . tv_sec ∗1000000) + time_before . tv_usec) ;
111

112 r e turn 0 ;
113 }
114

115

116 // −−
117 // reades the f i l e s t a tu s (metadata) o f the c rea ted f i l e s
118 // and measures time needed to do so
119 //

126

A.2. Benchmark Program Source Code

120 // r e tu rn s : 0 on suc c e s s / −1 i f e r r o r occurs
121 // −−
122 i n t Test_Stat (__u64 run_number)
123 {
124 __u64 i ;
125 i n t rc ;
126 s t r u c t s t a t f i l e_ s t a t u s ;
127 s t r u c t timezone tz ;
128 s t r u c t t imeva l t ime_before ;
129 s t r u c t t imeva l t ime_after ;
130 time_data_t ∗ time ;
131

132 time = &timeData [run_number] ;
133

134 /∗ get time be f o r e t e s t ∗/
135 rc = gett imeofday(&time_before , &tz) ;
136 i f (r c == −1)
137 r e turn −1;
138

139 f o r (i =0; i<NumberOfFiles ; i++){
140 /∗ open f i l e ∗/
141 Fi l eDesc r ip to rAr ray [i] = open(&FileNameArray [i] [0] , O_RDWR, 0666) ;
142 i f (F i l eDesc r ip to rAr ray [i] == −1) {
143 per ro r ("open") ;
144 r e turn −1;
145 }
146 /∗ read f i l e ∗/
147 rc = f s t a t (F i l eDesc r ip to rAr ray [i] , &f i l e_ s t a t u s) ;
148 i f (r c == −1) {
149 per ro r ("fstat") ;
150 r e turn −1;
151 }
152 /∗ c l o s e f i l e ∗/
153 rc = c l o s e (F i l eDesc r ip to rAr ray [i]) ;
154 i f (r c == −1){
155 per ro r ("close") ;
156 r e turn −1;
157 }
158 }
159

160 /∗ get time a f t e r t e s t ∗/
161 rc = gett imeofday(&time_after , &tz) ;
162 i f (r c == −1)
163 r e turn −1;
164

165 /∗ get d i f f e r e n c e ∗/
166 time−>read_usec = ((t ime_after . tv_sec ∗1000000) + time_after . tv_usec) −
167 ((t ime_before . tv_sec ∗1000000) + time_before . tv_usec) ;
168

169 r e turn 0 ;
170 }
171

172

173 // −−
174 // d e l e t e s the c rea ted f i l e s and measures time needed to do so
175 //
176 // r e tu rn s : 0 on suc c e s s / −1 i f e r r o r occurs
177 // −−
178 i n t Test_Delete (__u64 run_number)
179 {
180 __u64 i ;
181 i n t rc ;
182 s t r u c t timezone tz ;

127

A. Appendix

183 s t r u c t t imeva l t ime_before ;
184 s t r u c t t imeva l t ime_after ;
185 time_data_t ∗ time ;
186

187 time = &timeData [run_number] ;
188

189 /∗ get time be f o r e t e s t ∗/
190 rc = gett imeofday(&time_before , &tz) ;
191 i f (r c == −1)
192 r e turn −1;
193

194 f o r (i =0; i<NumberOfFiles ; i++){
195 rc = unl ink(&FileNameArray [i] [0]) ;
196 i f (r c == −1) {
197 per ro r ("unlink") ;
198 r e turn −1;
199 }
200 }
201

202 /∗ get time a f t e r t e s t ∗/
203 rc = gett imeofday(&time_after , &tz) ;
204 i f (r c == −1)
205 r e turn −1;
206

207 /∗ get d i f f e r e n c e ∗/
208 time−>delete_usec = ((t ime_after . tv_sec ∗1000000) + time_after . tv_usec) −
209 ((t ime_before . tv_sec ∗1000000) + time_before . tv_usec) ;
210

211 r e turn 0 ;
212 }
213

214

215 // −−
216 // Pr in t s the r e s u l t o f the benchmark t e s t on the s c r e en
217 // −−
218 void Print_Test_Results ()
219 {
220 __u64 i ;
221 double open_time = 0 ;
222 double read_time = 0 ;
223 double delete_time = 0 ;
224 double open_Temp = 0 ;
225 double read_Temp = 0 ;
226 double delete_Temp = 0 ;
227 double open_Operations ;
228 double read_Operations ;
229 double de lete_Operat ions ;
230 double open_StandardDeviation ;
231 double read_StandardDeviation ;
232 double de lete_StandardDeviat ion ;
233

234 time_data_t ∗ time ;
235

236 /∗ add up time ∗/
237 f o r (i =0; i<NumberOfTests ; i++){
238 time = &timeData [i] ;
239

240 open_time += time−>open_usec ;
241 read_time += time−>read_usec ;
242 delete_time += time−>delete_usec ;
243 }
244

245 /∗ c a l c u l a t e mean value ∗/

128

A.2. Benchmark Program Source Code

246 open_time = open_time / (double) NumberOfTests ;
247 read_time = read_time / (double) NumberOfTests ;
248 delete_time = delete_time / (double) NumberOfTests ;
249

250 /∗ pr in t mean value ∗/
251 p r i n t f ("-- Mean Time taken for Operations --\n") ;
252 p r i n t f ("- Time taken for create: %12.3lf usec -\n" , open_time) ;
253 p r i n t f ("- Time taken for read: %12.3lf usec -\n" , read_time) ;
254 p r i n t f ("- Time taken for delete: %12.3lf usec -\n" , de lete_time) ;
255 p r i n t f ("--\n\n") ;
256

257 /∗ c a l c u l a t e performed ope ra t i on s per s ec ∗/
258 open_Operations = (double) NumberOfFiles / (open_time / 1000000 . 0) ;
259 read_Operations = (double) NumberOfFiles / (read_time / 1000000 . 0) ;
260 delete_Operat ions = (double) NumberOfFiles / (delete_time / 1000000 . 0) ;
261

262 /∗ pr in t ope ra t i on s per s ec ∗/
263 p r i n t f ("-- Operations per second --\n") ;
264 p r i n t f ("- create: %10.3lf /sec -\n" , open_Operations) ;
265 p r i n t f ("- read: %10.3lf /sec -\n" , read_Operations) ;
266 p r i n t f ("- delete: %10.3lf /sec -\n" , de lete_Operat ions) ;
267 p r i n t f ("---------------------------\n\n") ;
268

269 /∗ pr in t time needed f o r one opera t i on ∗/
270 p r i n t f ("-- Mean Time --\n") ;
271 p r i n t f ("-- for one Operation --\n") ;
272 p r i n t f ("- create: %10.3lf msec -\n" , open_time /((double) NumberOfFiles ∗ 1 0 0 0 . 0)) ;
273 p r i n t f ("- read: %10.3lf msec -\n" , read_time /((double) NumberOfFiles ∗ 1 0 0 0 . 0)) ;
274 p r i n t f ("- delete: %10.3lf msec -\n" , de lete_time /((double) NumberOfFiles ∗ 1 0 0 0 . 0)) ;
275 p r i n t f ("---------------------------\n\n") ;
276

277 /∗ c a l c u l a t e standard dev i a t i on ∗/
278 f o r (i =0; i<NumberOfTests ; i++){
279 time = &timeData [i] ;
280

281 open_Temp += pow(time−>open_usec − open_time , 2 . 0) ;
282 read_Temp += pow(time−>read_usec − read_time , 2 . 0) ;
283 delete_Temp += pow(time−>delete_usec − delete_time , 2 . 0) ;
284 }
285 open_StandardDeviation = sq r t (open_Temp /(NumberOfTests−1)) ;
286 read_StandardDeviation = sq r t (read_Temp /(NumberOfTests−1)) ;
287 delete_StandardDeviat ion = sq r t (delete_Temp/(NumberOfTests−1)) ;
288

289 /∗ pr in t standard dev i a t i on ∗/
290 p r i n t f ("-- Standard Deviation --\n") ;
291 p r i n t f ("-- of Test Series --\n") ;
292 p r i n t f ("- create: %12.3lf -\n" , open_StandardDeviation) ;
293 p r i n t f ("- read: %12.3lf -\n" , read_StandardDeviation) ;
294 p r i n t f ("- delete: %12.3lf -\n" , de lete_StandardDeviat ion) ;
295 p r i n t f ("------------------------\n\n") ;
296 }
297

298

299 // −−
300 // Runns one t e s t s e r i e s
301 //
302 // r e tu rn s : 0 on suc c e s s / −1 i f e r r o r occurs
303 // −−
304 i n t Run_One_Test (__u64 run_number)
305 {
306 i n t rc ;
307

308 rc = Test_Open(run_number) ; /∗ c r e a t e f i l e s ∗/

129

A. Appendix

309 i f (r c == −1) {
310 f p r i n t f (s tde r r , "error , creating files\n") ;
311 r e turn −1;
312 }
313

314 rc = Test_Stat (run_number) ; /∗ read metadata ∗/
315 i f (r c == −1) {
316 f p r i n t f (s tde r r , "error , reading metadata\n") ;
317 r e turn −1;
318 }
319

320 rc = Test_Delete (run_number) ; /∗ de l e t e f i l e s ∗/
321 i f (r c == −1) {
322 f p r i n t f (s tde r r , "error , deleting files\n") ;
323 r e turn −1;
324 }
325

326 r e turn 0 ;
327 }
328

329

330 // −−
331 // Appl i ca t ion main entry po int
332 // −−
333 i n t main (i n t argc , char ∗argv [])
334 {
335 __u64 i ;
336 i n t rc ;
337

338 /∗ check f o r parameters ∗/
339 i f (argc != 3){
340 p r i n t f ("usage: benchmark number_of_files number_of_tests\n") ;
341 p r i n t f ("example: benchmark 1024 1\n") ;
342 e x i t (−1);
343 }
344

345 NumberOfFiles = a t o l l (argv [1]) ;
346 NumberOfTests = a t o l l (argv [2]) ;
347

348 p r i n t f ("Number of files to use for testing: %lld\n" , NumberOfFiles) ;
349 p r i n t f ("Number of tests to run: %lld\n" , NumberOfTests) ;
350

351 /∗ s e t up va lue s ∗/
352 p r i n t f ("setting up values ... ") ;
353 rc = Set_Up_Values () ;
354 i f (r c == −1){
355 f p r i n t f (s tde r r , "error Set_Up_Values\n") ;
356 f r e e (F i l eDesc r ip to rAr ray) ;
357 f r e e (FileNameArray) ;
358 e x i t (−1);
359 }
360 p r i n t f ("done\n") ;
361

362 /∗ run t e s t s e r i e s ∗/
363 p r i n t f ("doing test runns ...\n") ;
364 f o r (i =0; i<NumberOfTests ; i++){
365 rc = Run_One_Test(i) ;
366 i f (r c == −1){
367 f p r i n t f (s tde r r , "error in test run %lld\n" , i) ;
368 f r e e (F i l eDesc r ip to rAr ray) ;
369 f r e e (FileNameArray) ;
370 e x i t (−1);
371 }

130

A.2. Benchmark Program Source Code

372 p r i n t f (".") ;
373 }
374 p r i n t f ("\ndone\n") ;
375

376 /∗ pr in t r e s u l t s ∗/
377 p r i n t f ("\nTest Results :\n\n") ;
378 Print_Test_Results () ;
379

380 /∗ f r e e memory and ex i t ∗/
381 f r e e (F i l eDesc r ip to rAr ray) ;
382 f r e e (FileNameArray) ;
383 e x i t (1) ;
384 }
385

386

387 // −−
388 // End o f f i l e
389 // −−

A.2.2 benchmarkProgram.h

1 // −−
2 // Benchmark Programm fo r the
3 // Lustre High Ava i l a b i l i t y Daemon
4 //
5 // benchmarkProgram . h −−header f i l e −−
6 //
7 // ve r s i on 1 .0
8 //
9 // by Matthias Weber

10 // −−
11

12

13 // Inc lude s
14 #inc lude <s td i o . h>
15 #inc lude <s t d l i b . h>
16 #inc lude <uni s td . h>
17 #inc lude <s t r i n g . h>
18 #inc lude <f c n t l . h>
19 #inc lude <math . h>
20 #inc lude <sys / types . h>
21 #inc lude <sys / s t a t . h>
22 #inc lude <sys / time . h>
23

24

25 // Def ine s
26 typede f unsigned long __u32 ;
27 typede f unsigned long long __u64 ;
28 typede f s t r u c t {
29 __u64 open_usec ;
30 __u64 read_usec ;
31 __u64 de lete_usec ;
32 } time_data_t ;
33

34

35 // Prototypes
36 i n t Set_Up_Values () ;
37 i n t Test_Open (__u64 run_number) ;
38 i n t Test_Stat (__u64 run_number) ;
39 i n t Test_Delete (__u64 run_number) ;
40 i n t Run_One_Test (__u64 run_number) ;

131

A. Appendix

41 void Print_Test_Results () ;
42

43

44 // −−
45 // End o f f i l e
46 // −−

132

A.3. Lustre XML Con�g File

A.3 Lustre XML Con�g File

1 <?xml ve r s i on='1.0' encoding='UTF -8'?>
2 <l u s t r e v e r s i on='2003070801 ' mtime='1169142788 '>
3 <ldlm name='ldlm' uuid='ldlm_UUID '/>
4 <node uuid='mds1_UUID ' name='mds1'>
5 <p r o f i l e_ r e f uu id r e f='PROFILE_mds1_UUID '/>
6 <network uuid='NET_mds1_tcp_UUID ' nettype='tcp' name='NET_mds1_tcp '>
7 <nid>mds1</nid>
8 <c l u s t e r i d >0</c l u s t e r i d >
9 <port >988</port>

10 </network>
11 </node>
12 <p r o f i l e uuid='PROFILE_mds1_UUID ' name='PROFILE_mds1 '>
13 <ldlm_ref uu id r e f='ldlm_UUID '/>
14 <network_ref uu id r e f='NET_mds1_tcp_UUID '/>
15 <mdsdev_ref uu id r e f='MDD_mds1_mds1_UUID '/>
16 </p r o f i l e >
17 <node uuid='ost1_UUID ' name='ost1'>
18 <p r o f i l e_ r e f uu id r e f='PROFILE_ost1_UUID '/>
19 <network uuid='NET_ost1_tcp_UUID ' nettype='tcp' name='NET_ost1_tcp '>
20 <nid>ost1</nid>
21 <c l u s t e r i d >0</c l u s t e r i d >
22 <port >988</port>
23 </network>
24 </node>
25 <p r o f i l e uuid='PROFILE_ost1_UUID ' name='PROFILE_ost1 '>
26 <ldlm_ref uu id r e f='ldlm_UUID '/>
27 <network_ref uu id r e f='NET_ost1_tcp_UUID '/>
28 <osd_ref uu id r e f='OSD_ost1_ost1_UUID '/>
29 <osd_ref uu id r e f='OSD_ost2_ost1_UUID '/>
30 </p r o f i l e >
31 <node uuid='usr1_UUID ' name='usr1'>
32 <p r o f i l e_ r e f uu id r e f='PROFILE_usr1_UUID '/>
33 <network uuid='NET_usr1_tcp_UUID ' nettype='tcp' name='NET_usr1_tcp '>
34 <nid>usr1</nid>
35 <c l u s t e r i d >0</c l u s t e r i d >
36 <port >988</port>
37 </network>
38 </node>
39 <p r o f i l e uuid='PROFILE_usr1_UUID ' name='PROFILE_usr1 '>
40 <ldlm_ref uu id r e f='ldlm_UUID '/>
41 <network_ref uu id r e f='NET_usr1_tcp_UUID '/>
42 <mountpoint_ref uu id r e f='MNT_usr1_UUID '/>
43 </p r o f i l e >
44 <mds uuid='mds1_UUID_2 ' name='mds1'>
45 <act i v e_re f uu id r e f='MDD_mds1_mds1_UUID '/>
46 <lovcon f i g_r e f uu id r e f='LVCFG_lov1_UUID '/>
47 <f i l e s y s t em_re f uu id r e f='FS_fsname_UUID '/>
48 </mds>
49 <mdsdev uuid='MDD_mds1_mds1_UUID ' name='MDD_mds1_mds1 '>
50 <fstype>l d i s k f s </fs type>
51 <devpath>/ l u s t r e t e s t /mds−mds1</devpath>
52 <autoformat>no</autoformat>
53 <devs i ze >500000</devs i ze>
54 <jou rna l s i z e >0</j ou rna l s i z e >
55 <inode s i z e >0</inode s i z e >
56 <node_ref uu id r e f='mds1_UUID '/>
57 <targe t_re f uu id r e f='mds1_UUID_2 '/>
58 </mdsdev>
59 <lov s t r i p e s i z e='1048576 ' s t r i p e c oun t='0' s t r i p e p a t t e r n='0'
60 uuid='lov1_UUID ' name='lov1'>

133

A. Appendix

61 <mds_ref uu id r e f='mds1_UUID_2 '/>
62 <obd_ref uu id r e f='ost1_UUID_2 '/>
63 <obd_ref uu id r e f='ost2_UUID '/>
64 </lov>
65 <lov c on f i g uuid='LVCFG_lov1_UUID ' name='LVCFG_lov1 '>
66 <lov_re f uu id r e f='lov1_UUID '/>
67 </lovcon f i g >
68 <ost uuid='ost1_UUID_2 ' name='ost1'>
69 <act i v e_re f uu id r e f='OSD_ost1_ost1_UUID '/>
70 </ost>
71 <osd osdtype='obdfilter ' uuid='OSD_ost1_ost1_UUID ' name='OSD_ost1_ost1 '>
72 <targe t_re f uu id r e f='ost1_UUID_2 '/>
73 <node_ref uu id r e f='ost1_UUID '/>
74 <fstype>l d i s k f s </fs type>
75 <devpath>/ l u s t r e t e s t / ost1</devpath>
76 <autoformat>no</autoformat>
77 <devs i ze >1000000</devs i ze>
78 <jou rna l s i z e >0</j ou rna l s i z e >
79 <inode s i z e >0</inode s i z e >
80 </osd>
81 <ost uuid='ost2_UUID ' name='ost2'>
82 <act i v e_re f uu id r e f='OSD_ost2_ost1_UUID '/>
83 </ost>
84 <osd osdtype='obdfilter ' uuid='OSD_ost2_ost1_UUID ' name='OSD_ost2_ost1 '>
85 <targe t_re f uu id r e f='ost2_UUID '/>
86 <node_ref uu id r e f='ost1_UUID '/>
87 <fstype>l d i s k f s </fs type>
88 <devpath>/ l u s t r e t e s t / ost2</devpath>
89 <autoformat>no</autoformat>
90 <devs i ze >1000000</devs i ze>
91 <jou rna l s i z e >0</j ou rna l s i z e >
92 <inode s i z e >0</inode s i z e >
93 </osd>
94 <f i l e s y s t em uuid='FS_fsname_UUID ' name='FS_fsname '>
95 <mds_ref uu id r e f='mds1_UUID_2 '/>
96 <obd_ref uu id r e f='lov1_UUID '/>
97 </f i l e s y s t em>
98 <mountpoint uuid='MNT_usr1_UUID ' name='MNT_usr1 '>
99 <f i l e s y s t em_re f uu id r e f='FS_fsname_UUID '/>

100 <path>/mnt/ l u s t r e </path>
101 </mountpoint>
102 </lu s t r e >

134

A.4. User Manuals

A.4 User Manuals

A.4.1 Benchmark Program

The benchmark program can be build easily from the sources, provided in Section A.2,

with the following command:

gcc -lm -o benchmarkProgram benchmarkProgram.c

The use of the program is straightforward. The program needs two parameters to de-

termine how the test run should be performed. The �rst parameter gives the number

of �les to use for one test run. The second parameter tells the program how many test

runs to perform.

A command for an example test may look like this:

./benchmarkProgram 1024 10

The program always uses the /mnt/lustre/ directory for testing. The above given

command starts the benchmark program. It performs one test run with three individ-

ual tests. The program creates, reads the metadata of, and deletes 1024 �les in the

mentioned directory. The times needed to perform each of the tests are taken.

The second parameter tells the program to repeat this test run 10 times. After all test

runs are completed, the mean time needed to perform one test is calculated from all test

runs. Also the standard derivation of the test series is calculated in order to evaluate

the error of the test.

The result of the example test is given below:

Number of files to use for testing: 1024

Number of tests to run: 10

setting up values... done

doing test runns...

..........

done

135

A. Appendix

Test Results:

-- Mean Time taken for Operations --

- Time taken for create: 46457.700 usec -

- Time taken for read: 2213.200 usec -

- Time taken for delete: 4732.100 usec -

--

-- Operations per second --

- create: 22041.556 /sec -

- read: 462678.475 /sec -

- delete: 216394.413 /sec -

-- Mean Time --

-- for one Operation --

- create: 0.045 msec -

- read: 0.002 msec -

- delete: 0.005 msec -

-- Standard Deviation --

-- of Test Series --

- create: 33795.633 -

- read: 90.385 -

- delete: 213.347 -

136

A.4. User Manuals

A.4.2 Lustre HA Prototypes

Due to the lack of complete HA functionality a user manual cannot be provided for the

prototypes. What is described in this section is how to setup the machines in order to

replicate the results of this project.

First step is to setup a network with �ve nodes. All nodes need to run Fedora Core 4

as operating system.

Lustre needs to be installed on all nodes. The test runs in the project have been done

with Lustre version 1.4.8, build from source against a prepatched kernel provided by

Lustre. The two following source packages of Lustre version 1.4.8 for the Red Hat kernel

2.6 include the needed data and can be downloaded from Lustre1.

The prepatched kernel source package:

kernel-source-2.6.9-42.0.3.EL_lustre.1.4.8.i686.rpm

The Lustre source package:

lustre-source-1.4.8-2.6.9_42.0.3.EL_lustre.1.4.8smp.i686.rpm

The installed source trees can be found in the following directory:

/usr/src/

Now, the kernel source tree needs to be con�gured and installed. The following com-

mands must be performed in the kernel source directory.

clean the source tree:

make distclean

copy con�g �le into source tree:

cp /boot/config-`uname -r` .config

con�gure the kernel:

make oldconfig || make menuconfig

build the kernel and install the kernel modules:

make oldconfig dep bzImage modules modules_install install

1Lustre download: http://www.clusterfs.com/download.html

137

http://www.clusterfs.com/download.html

A. Appendix

modify the boot menu in order to reboot with the new kernel:

vi /boot/grub/menu.lst

Now, the machine needs to be rebooted with the new kernel.

After this step Lustre can be built. This is done with the following two commands called

from the Lustre source directory:

./configure �with-linux=/your/patched/kernel/sources

make rpms

If run successfully, Lustre builds rpm packages and places them in the following directory:

/usr/src/redhat/RPMS/i386/

To install Lustre on the system, two packages from this directory need to be installed.

The Lustre package itself and the Lustre kernel modules.

After the installation of Lustre the prototypes must be built. This can be done with

the source code and the make�le provided in Section A.1. How to build the di�erent

components required for the tests is described in the make�le.

Figure 3.9 gives and overview of the needed prototype components and the network

address setup. On the client (USR1) and the �rst MDS (MDS1) node IP aliasing must be

used to establish the two IP addresses.

Lustre must be con�gured with help three XML �les. One XML �le for each component

of the �le system. How to create and con�gure these XML �les is described in Section

3.1.

For proper functionality of the prototypes the group communication system Transis

needs to be downloaded2 and built from source. This can be easily done with the make

command called in the source directory.

Transis needs to know the addresses of all possible group members. A plain text �le

called config, only including all IP addresses of the interceptors of the MDS group must

be created in the directory of the Transis daemon executable.

Now, all components needed are installed and con�gured. Last thing to do, in order to

2Transis download: http://www.cs.huji.ac.il/labs/transis/software.html

138

http://www.cs.huji.ac.il/labs/transis/software.html

A.4. User Manuals

replicate the results, is to start the test setup. This process requires several steps.

Fist, the Transis daemon has to be started on all relevant nodes.

Then all for the test required prototype components need to be started. This is done by

just starting the built executable.

Last, Lustre can be started. This is done in three steps. Therefore, the following

commands have to be performed on the respective nodes in the directory in which the

XML �le lies.

First, the OSTs are started:

lconf �reformat �node ost config_OST.xml

Then, the MDS is started:

lconf �reformat �node mds config_MDS.xml

At last, the client can be started:

lconf �node usr config_USR.xml

If no errors occur, the test setup is up and running. To use the �le system or to perform

tests, the benchmark program described in Section A.4.1 can be used.

In order to shutdown Lustre, the following commands must be used on the respective

nodes in the given order.

First the OSTs are stopped:

lconf �cleanup �node ost config_OST.xml

Then the MDS is shutdown:

lconf �cleanup �node mds config_MDS.xml

Last, the client is unmounted:

lconf �cleanup �node usr config_USR.xml

After Lustre has exited, the prototype components and the Transis daemon can be

stopped.

139

List of Figures

1.1. Lustre Overview [8] . 2

1.2. Lustre Failover Mechanism [8] . 4

1.3. Advanced Beowulf Cluster Architecture with Symmetric Active/Active

High Availability for Head Node System Services [21] 6

1.4. Active/Active Metadata Servers in a Distributed Storage System [18] . . 8

1.5. Write Request Throughput Comparison of Single vs. Multiple Metadata

Servers, A/A means Active/Active Servers [18] 9

1.6. Read Request Throughput Comparison of Single vs. Multiple Metadata

Servers [18] . 9

2.1. Interactions between Lustre Subsystems [8] 15

2.2. Lustre Module Dependencies . 16

2.3. Path of Metadata Client Request . 18

2.4. Lustre Connection Initialisation . 19

2.5. Lustre Acceptor Request Message . 20

2.6. Lustre LNET Hello Message . 21

2.7. Ordinary Lustre Message . 22

2.8. Scheme of Internal Replication Method 24

2.9. Scheme of External Replication Method 25

2.10. Standard Lustre Setup . 27

2.11. Scheme of Active/Active HA . 28

2.12. Preliminary System Design . 29

2.13. Prototype 1 . 31

2.14. Prototype 2 . 33

3.1. Lustre Con�guration Script . 36

3.2. Message Forwarding using one Thread 38

3.3. Message Forwarding using Multithreading 39

3.4. Test Setup: Standard Lustre . 44

3.5. Test Setup: MDS Interceptor . 44

3.6. Test Setup: Client Interceptor . 45

3.7. Test Setup: MDS Interceptor and Client Interceptor 46

3.8. Test Setup: Prototype 1 . 47

141

List of Figures

3.9. Test Setup: Prototype 2 . 48

3.10. Performance Test Results 100MBit . 52

3.11. Performance Test Results 1GBit . 53

3.12. 100MBit, 1File Test Runs . 58

3.13. 100MBit, 100Files Test Runs . 58

3.14. 1GBit, 1File Test Runs . 59

3.15. 1GBit, 100Files Test Runs . 59

3.16. File Creation Performance of Lustre . 60

3.17. File Creation Performance using MDS Interceptor and Client Interceptor 60

4.1. Connection Table . 63

4.2. Message Routing, Request from Client to MDS 65

4.3. Message Routing, Response from MDS to Client 65

4.4. Single Instance Execution Problem . 66

4.5. Single Instance Execution Problem Solved 67

4.6. Connection Failover . 71

142

List of Tables

1.1. Job Submission Latency Comparison of Single vs. Multiple Head Node

HPC Job and Resource Management [21] 7

1.2. Write Request Latency (ms) Comparison of Single vs. Multiple Metadata

Servers [18] . 7

1.3. Requirements and Milestones Overview 14

2.1. Lustre Module Description . 17

3.1. Delay Time of IP Aliasing . 54

3.2. 100MBit Network Latency . 55

3.3. 1GBit Network Latency . 56

143

	Acknowledgment
	Abstract
	Contents
	Introduction
	Background
	High Performance Computing
	The Lustre File System

	Previous Work
	High Availability Computing
	Virtual Synchrony

	Key Problems and Specification
	Software System Requirements and Milestones

	Preliminary System Design
	Analysis of Lustre
	Lustre Design
	Lustre Networking

	Replication Method
	Feasibility of Internal Replication
	Feasibility of External Replication

	System Design Approach
	Standard Lustre Setup
	Lustre using External Replication of the MDS

	Final System Design
	Prototype 1
	Prototype 2

	Implementation Strategy
	Lustre Configuration
	Messaging Mechanisms
	Implementation Challenges
	System Tests
	Functionality
	Performance

	Detailed Software Design
	Message Routing
	Single Instance Execution Problem
	Dynamic Group Reconfiguration
	Connection Failover

	Conclusions
	Results
	Future Work

	References
	Appendix
	Lustre HA Daemon Source Code
	lustreHAdaemon.c
	lustreHAdaemon.h
	transis.c
	transis.h
	lustreMessageAdjust.c
	lustreMessageAdjust.h
	Makefile

	Benchmark Program Source Code
	benchmarkProgram.c
	benchmarkProgram.h

	Lustre XML Config File
	User Manuals
	Benchmark Program
	Lustre HA Prototypes

	List of Figures
	List of Tables

